You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
7.6 KiB
158 lines
7.6 KiB
import stormpy
|
|
import stormpy.info
|
|
import stormpy.logic
|
|
from helpers.helper import get_example_path
|
|
|
|
from configurations import pars
|
|
|
|
|
|
@pars
|
|
class TestParametric:
|
|
def test_parametric_model_checking_sparse(self):
|
|
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
|
|
prop = "P=? [F s=5]"
|
|
formulas = stormpy.parse_properties_for_prism_program(prop, program)
|
|
model = stormpy.build_parametric_model(program, formulas)
|
|
assert model.nr_states == 613
|
|
assert model.nr_transitions == 803
|
|
assert model.model_type == stormpy.ModelType.DTMC
|
|
assert model.has_parameters
|
|
initial_state = model.initial_states[0]
|
|
assert initial_state == 0
|
|
result = stormpy.model_checking(model, formulas[0])
|
|
func = result.at(initial_state)
|
|
one = stormpy.FactorizedPolynomial(stormpy.RationalRF(1))
|
|
assert func.denominator == one
|
|
|
|
def test_parametric_model_checking_dd(self):
|
|
program = stormpy.parse_prism_program(get_example_path("pdtmc", "parametric_die.pm"))
|
|
prop = "P=? [F s=5]"
|
|
formulas = stormpy.parse_properties_for_prism_program(prop, program)
|
|
model = stormpy.build_symbolic_parametric_model(program, formulas)
|
|
assert model.nr_states == 11
|
|
assert model.nr_transitions == 17
|
|
assert model.model_type == stormpy.ModelType.DTMC
|
|
assert model.has_parameters
|
|
result = stormpy.check_model_dd(model, formulas[0])
|
|
assert type(result) is stormpy.SymbolicParametricQuantitativeCheckResult
|
|
|
|
def test_parametric_model_checking_hybrid(self):
|
|
program = stormpy.parse_prism_program(get_example_path("pdtmc", "parametric_die.pm"))
|
|
prop = "P=? [F s=5]"
|
|
formulas = stormpy.parse_properties_for_prism_program(prop, program)
|
|
model = stormpy.build_symbolic_parametric_model(program, formulas)
|
|
assert model.nr_states == 11
|
|
assert model.nr_transitions == 17
|
|
assert model.model_type == stormpy.ModelType.DTMC
|
|
assert model.has_parameters
|
|
result = stormpy.check_model_hybrid(model, formulas[0])
|
|
assert type(result) is stormpy.HybridParametricQuantitativeCheckResult
|
|
values = result.get_values()
|
|
assert len(values) == 3
|
|
|
|
def test_parameters(self):
|
|
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
|
|
formulas = stormpy.parse_properties_for_prism_program("P=? [F s=5]", program)
|
|
model = stormpy.build_parametric_model(program, formulas)
|
|
model_parameters = model.collect_probability_parameters()
|
|
reward_parameters = model.collect_reward_parameters()
|
|
all_parameters = model.collect_all_parameters()
|
|
assert len(model_parameters) == 2
|
|
assert len(reward_parameters) == 0
|
|
assert len(all_parameters) == 2
|
|
|
|
program_reward = stormpy.parse_prism_program(get_example_path("pdtmc", "brp_rewards16_2.pm"))
|
|
formulas_reward = stormpy.parse_properties_for_prism_program("Rmin=? [ F \"target\" ]", program_reward)
|
|
model = stormpy.build_parametric_model(program_reward, formulas_reward)
|
|
model_parameters = model.collect_probability_parameters()
|
|
reward_parameters = model.collect_reward_parameters()
|
|
all_parameters = model.collect_all_parameters()
|
|
assert len(model_parameters) == 2
|
|
assert len(reward_parameters) == 2
|
|
assert len(all_parameters) == 4
|
|
|
|
model = stormpy.build_symbolic_parametric_model(program, formulas)
|
|
assert len(model.get_parameters()) == 4
|
|
|
|
model = stormpy.build_symbolic_parametric_model(program_reward, formulas_reward)
|
|
assert len(model.get_parameters()) == 4
|
|
|
|
def test_constraints_collector(self):
|
|
from pycarl.formula import FormulaType, Relation
|
|
if stormpy.info.storm_ratfunc_use_cln():
|
|
import pycarl.cln.formula
|
|
else:
|
|
import pycarl.gmp.formula
|
|
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
|
|
prop = "P=? [F s=5]"
|
|
formulas = stormpy.parse_properties_for_prism_program(prop, program)
|
|
model = stormpy.build_parametric_model(program, formulas)
|
|
collector = stormpy.ConstraintCollector(model)
|
|
constraints_well_formed = collector.wellformed_constraints
|
|
for formula in constraints_well_formed:
|
|
assert formula.type == FormulaType.CONSTRAINT
|
|
constraint = formula.get_constraint()
|
|
assert constraint.relation == Relation.LEQ
|
|
constraints_graph_preserving = collector.graph_preserving_constraints
|
|
for formula in constraints_graph_preserving:
|
|
assert formula.type == FormulaType.CONSTRAINT
|
|
constraint = formula.get_constraint()
|
|
assert constraint.relation == Relation.NEQ
|
|
|
|
def test_derivatives(self):
|
|
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
|
|
prop = "P<=0.84 [F s=5 ]"
|
|
formulas = stormpy.parse_properties_for_prism_program(prop, program)
|
|
model = stormpy.build_parametric_model(program, formulas)
|
|
assert model.nr_states == 613
|
|
assert model.nr_transitions == 803
|
|
assert model.model_type == stormpy.ModelType.DTMC
|
|
assert model.has_parameters
|
|
parameters = model.collect_probability_parameters()
|
|
assert len(parameters) == 2
|
|
derivatives = stormpy.pars.gather_derivatives(model, list(parameters)[0])
|
|
assert len(derivatives) == 0
|
|
|
|
def test_dtmc_simplification(self):
|
|
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
|
|
prop = "P<=0.84 [F s=5 ]"
|
|
formulas = stormpy.parse_properties_for_prism_program(prop, program)
|
|
formula = formulas[0].raw_formula
|
|
model = stormpy.build_parametric_model(program, formulas)
|
|
assert model.nr_states == 613
|
|
assert model.nr_transitions == 803
|
|
model, formula = stormpy.pars.simplify_model(model, formula)
|
|
assert model.nr_states == 193
|
|
assert model.nr_transitions == 383
|
|
|
|
def test_mdp_simplification(self):
|
|
program = stormpy.parse_prism_program(get_example_path("pmdp", "two_dice.nm"))
|
|
formulas = stormpy.parse_properties_for_prism_program("Pmin=? [ F \"two\" ]", program)
|
|
formula = formulas[0].raw_formula
|
|
model = stormpy.build_parametric_model(program, formulas)
|
|
assert model.nr_states == 169
|
|
assert model.nr_transitions == 435
|
|
model, formula = stormpy.pars.simplify_model(model, formula)
|
|
assert model.nr_states == 17
|
|
assert model.nr_transitions == 50
|
|
|
|
def test_region(self):
|
|
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
|
|
prop = "P<=0.84 [F s=5 ]"
|
|
formulas = stormpy.parse_properties_for_prism_program(prop, program)
|
|
model = stormpy.build_parametric_model(program, formulas)
|
|
parameters = model.collect_probability_parameters()
|
|
assert len(parameters) == 2
|
|
region = stormpy.pars.ParameterRegion.create_from_string("0.7<=pL<=0.9,0.75<=pK<=0.95", parameters)
|
|
assert region.area == stormpy.RationalRF(1) / stormpy.RationalRF(25)
|
|
for par in parameters:
|
|
if par.name == "pL":
|
|
pL = par
|
|
elif par.name == "pK":
|
|
pK = par
|
|
else:
|
|
assert False
|
|
dec = stormpy.RationalRF(100)
|
|
region_valuation = {pL: (stormpy.RationalRF(70) / dec, stormpy.RationalRF(90) / dec), pK: (stormpy.RationalRF(75) / dec, stormpy.RationalRF(95) / dec)}
|
|
region = stormpy.pars.ParameterRegion(region_valuation)
|
|
assert region.area == stormpy.RationalRF(1) / stormpy.RationalRF(25)
|