You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
6.3 KiB
131 lines
6.3 KiB
|
|
|
|
import gymnasium as gym
|
|
import minigrid
|
|
|
|
from ray.tune import register_env
|
|
from ray.rllib.algorithms.ppo import PPOConfig
|
|
from ray.rllib.algorithms.dqn.dqn import DQNConfig
|
|
from ray.tune.logger import pretty_print
|
|
from ray.rllib.models import ModelCatalog
|
|
|
|
from ray.rllib.algorithms.algorithm import Algorithm
|
|
|
|
from torch_action_mask_model import TorchActionMaskModel
|
|
from rllibutils import OneHotShieldingWrapper, MiniGridShieldingWrapper
|
|
from utils import parse_arguments, create_log_dir, ShieldingConfig
|
|
from utils import MiniGridShieldHandler, create_shield_query
|
|
from callbacks import CustomCallback
|
|
|
|
from ray.tune.logger import TBXLogger
|
|
import imageio
|
|
import os
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
def shielding_env_creater(config):
|
|
name = config.get("name", "MiniGrid-LavaSlipperyS12-v2")
|
|
framestack = config.get("framestack", 4)
|
|
args = config.get("args", None)
|
|
args.grid_path = F"{args.grid_path}_{config.worker_index}.txt"
|
|
args.prism_path = F"{args.prism_path}_{config.worker_index}.prism"
|
|
|
|
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula)
|
|
|
|
env = gym.make(name, randomize_start=False)
|
|
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query, mask_actions=False)
|
|
# env = minigrid.wrappers.ImgObsWrapper(env)
|
|
# env = ImgObsWrapper(env)
|
|
env = OneHotShieldingWrapper(env,
|
|
config.vector_index if hasattr(config, "vector_index") else 0,
|
|
framestack=framestack
|
|
)
|
|
|
|
env.randomize_start = False
|
|
|
|
|
|
return env
|
|
|
|
|
|
def register_minigrid_shielding_env(args):
|
|
env_name = "mini-grid-shielding"
|
|
register_env(env_name, shielding_env_creater)
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"shielding_model",
|
|
TorchActionMaskModel
|
|
)
|
|
|
|
import argparse
|
|
args = parse_arguments(argparse)
|
|
|
|
register_minigrid_shielding_env(args)
|
|
|
|
# Use the Algorithm's `from_checkpoint` utility to get a new algo instance
|
|
# that has the exact same state as the old one, from which the checkpoint was
|
|
# created in the first place:
|
|
# checkpoints = [('/home/knolli/Documents/University/Thesis/log_results/sh:none-env:MiniGrid-LavaSlipperyS12-v2-conf:adv_config_slippery_low.yaml/checkpoint_000030', 'No_shield'),
|
|
# ("/home/knolli/Documents/University/Thesis/log_results/Relative_06/sh:full-env:MiniGrid-LavaSlipperyS12-v2-conf:adv_config_slippery_high.yaml/checkpoint_000030", "Rel_06_high"),
|
|
# ("/home/knolli/Documents/University/Thesis/log_results/Relative_06/sh:full-env:MiniGrid-LavaSlipperyS12-v2-conf:adv_config_slippery_medium.yaml/checkpoint_000030", "Rel_06_med"),
|
|
# ("/home/knolli/Documents/University/Thesis/log_results/Relative_06/sh:full-env:MiniGrid-LavaSlipperyS12-v2-conf:adv_config_slippery_low.yaml/checkpoint_000030", "Rel_06_low"),
|
|
# ("/home/knolli/Documents/University/Thesis/log_results/RELATIVE_1/sh:full-env:MiniGrid-LavaSlipperyS12-v2-conf:adv_config_slippery_high.yaml/checkpoint_000016", "Rel_1_high"),
|
|
# ("/home/knolli/Documents/University/Thesis/log_results/RELATIVE_1/sh:full-env:MiniGrid-LavaSlipperyS12-v2-conf:adv_config_slippery_medium.yaml/checkpoint_000030", "Rel_1_med"),
|
|
# ("/home/knolli/Documents/University/Thesis/log_results/RELATIVE_1/sh:full-env:MiniGrid-LavaSlipperyS12-v2-conf:adv_config_slippery_low.yaml/checkpoint_000030", "Rel_1_low")]
|
|
checkpoints = [
|
|
# ('/home/knolli/Documents/University/Thesis/log_results/sh:none-value:0.9-env:MiniGrid-LavaSlipperyS12-v2-conf:slippery_high_pro.yaml/checkpoint_000070', "no_shielding"),
|
|
# ('/home/knolli/Documents/University/Thesis/log_results/sh:full-value:0.9-env:MiniGrid-LavaSlipperyS12-v2-conf:slippery_high_pro.yaml/checkpoint_000070', "shielding_09"),
|
|
# ('/home/knolli/Documents/University/Thesis/log_results/sh:full-value:1.0-env:MiniGrid-LavaSlipperyS12-v2-conf:slippery_high_pro.yaml/checkpoint_000070', "shielding_1")]
|
|
('/home/knolli/Documents/University/Thesis/logresults/exp/trial_0_2024-01-09_22-39-43/checkpoint_000002', 'v3')]
|
|
|
|
# checkpoints = [('/home/knolli/Documents/University/Thesis/log_results/sh:full-env:MiniGrid-LavaSlipperyS12-v2-conf:slippery_high_prob.yaml/checkpoint_000060', "Shielded_Gif")]
|
|
for path_to_checkpoint, gif_name in checkpoints:
|
|
algo = Algorithm.from_checkpoint(path_to_checkpoint)
|
|
policy = algo.get_policy()
|
|
# Continue training.
|
|
name = "MiniGrid-LavaSlipperyS12-v0"
|
|
shield_creator = MiniGridShieldHandler(F"./{args.grid_path}_1.txt", args.grid_to_prism_binary_path, F"./{args.prism_path}_1.prism", args.formula)
|
|
|
|
env = gym.make(name, randomize_start=False, probability_forward=3/9, probability_direct_neighbour=5/9, probability_next_neighbour=7/9,)
|
|
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query, mask_actions=True)
|
|
# env = minigrid.wrappers.ImgObsWrapper(env)
|
|
# env = ImgObsWrapper(env)
|
|
env = OneHotShieldingWrapper(env,
|
|
0,
|
|
framestack=4
|
|
)
|
|
|
|
episode_reward = 0
|
|
terminated = truncated = False
|
|
|
|
obs, info = env.reset()
|
|
i = 0
|
|
filenames = []
|
|
while not terminated and not truncated:
|
|
action = algo.compute_single_action(obs)
|
|
policy_actions = policy.compute_single_action(obs)
|
|
# print(f'Policy actions {policy_actions}')
|
|
# print(f'Policy actions {policy_actions.logits}')
|
|
policy_action = policy_actions[2]['action_dist_inputs'].argmax()
|
|
# print(f'The action is: {action} vs policy action {policy_action}')
|
|
|
|
if policy_action != action:
|
|
print('policy action deviated')
|
|
action = policy_action
|
|
obs, reward, terminated, truncated, info = env.step(action)
|
|
episode_reward += reward
|
|
filename = F"./frames/{i}.jpg"
|
|
img = env.get_frame()
|
|
plt.imsave(filename, img)
|
|
filenames.append(filename)
|
|
i = i + 1
|
|
|
|
import imageio
|
|
images = []
|
|
for filename in filenames:
|
|
images.append(imageio.imread(filename))
|
|
imageio.mimsave(F'./{gif_name}.gif', images)
|
|
|
|
for filename in filenames:
|
|
os.remove(filename)
|
|
|