You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

86 lines
3.5 KiB

import stormpy
import stormpy.core
import stormpy.info
import pycarl
import pycarl.core
import stormpy.examples
import stormpy.examples.files
import stormpy.pomdp
import stormpy._config as config
def example_parametric_models_01():
# Check support for parameters
if not config.storm_with_pars:
print("Support parameters is missing. Try building storm-pars.")
return
import stormpy.pars
from pycarl.formula import FormulaType, Relation
if stormpy.info.storm_ratfunc_use_cln():
import pycarl.cln.formula
else:
import pycarl.gmp.formula
# Prevent curious side effects from earlier runs (for tests only)
pycarl.clear_pools()
# ###
# # How to apply an unknown FSC to obtain a pMC from a POMDP
# path = stormpy.examples.files.prism_pomdp_maze
# prism_program = stormpy.parse_prism_program(path)
#
# formula_str = "P=? [!\"bad\" U \"goal\"]"
# properties = stormpy.parse_properties_for_prism_program(formula_str, prism_program)
# # construct the POMDP
# pomdp = stormpy.build_model(prism_program, properties)
# # make its representation canonic.
# pomdp = stormpy.pomdp.make_canonic(pomdp)
# # make the POMDP simple. This step is optional but often beneficial
# pomdp = stormpy.pomdp.make_simple(pomdp)
# # construct the memory for the FSC
# # in this case, a selective counter with two states
# memory_builder = stormpy.pomdp.PomdpMemoryBuilder()
# memory = memory_builder.build(stormpy.pomdp.PomdpMemoryPattern.selective_counter, 2)
# # apply the memory onto the POMDP to get the cartesian product
# pomdp = stormpy.pomdp.unfold_memory(pomdp, memory)
# # apply the memory onto the POMDP to get the cartesian product
# pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear)
####
# How to apply an unknown FSC to obtain a pMC from a pPOMDP
path = stormpy.examples.files.prism_par_pomdp_maze
prism_program = stormpy.parse_prism_program(path)
formula_str = "P=? [!\"bad\" U \"goal\"]"
properties = stormpy.parse_properties_for_prism_program(formula_str, prism_program)
# construct the pPOMDP
options = stormpy.BuilderOptions([p.raw_formula for p in properties])
options.set_build_state_valuations()
options.set_build_choice_labels()
pomdp = stormpy.build_sparse_parametric_model_with_options(prism_program, options)
# make its representation canonic.
pomdp = stormpy.pomdp.make_canonic(pomdp)
# construct the memory for the FSC
# in this case, a selective counter with two states
memory_builder = stormpy.pomdp.PomdpMemoryBuilder()
memory = memory_builder.build(stormpy.pomdp.PomdpMemoryPattern.selective_counter, 3)
# apply the memory onto the POMDP to get the cartesian product
pomdp = stormpy.pomdp.unfold_memory(pomdp, memory, add_memory_labels=True, keep_state_valuations=True)
# make the POMDP simple. This step is optional but often beneficial
pomdp = stormpy.pomdp.make_simple(pomdp, keep_state_valuations=True)
# apply the unknown FSC to obtain a pmc from the POMDP
pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear)
export_pmc = False # Set to True to export the pMC as drn.
if export_pmc:
export_options = stormpy.core.DirectEncodingOptions()
export_options.allow_placeholders = False
stormpy.export_to_drn(pmc, "test.out", export_options)
if __name__ == '__main__':
example_parametric_models_01()