You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.2 KiB
93 lines
3.2 KiB
/* FCTP, Fixed-Charge Transportation Problem */
|
|
|
|
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
|
|
|
|
/* The Fixed-Charge Transportation Problem (FCTP) is obtained from
|
|
classical transportation problem by imposing a fixed cost on each
|
|
transportation link if there is a positive flow on that link. */
|
|
|
|
param m, integer, > 0;
|
|
/* number of sources */
|
|
|
|
param n, integer, > 0;
|
|
/* number of customers */
|
|
|
|
set I := 1..m;
|
|
/* set of sources */
|
|
|
|
set J := 1..n;
|
|
/* set of customers */
|
|
|
|
param supply{i in I}, >= 0;
|
|
/* supply at source i */
|
|
|
|
param demand{j in J}, >= 0;
|
|
/* demand at customer j */
|
|
|
|
param varcost{i in I, j in J}, >= 0;
|
|
/* variable cost (a cost per one unit shipped from i to j) */
|
|
|
|
param fixcost{i in I, j in J}, >= 0;
|
|
/* fixed cost (a cost for shipping any amount from i to j) */
|
|
|
|
var x{i in I, j in J}, >= 0;
|
|
/* amount shipped from source i to customer j */
|
|
|
|
s.t. f{i in I}: sum{j in J} x[i,j] = supply[i];
|
|
/* observe supply at source i */
|
|
|
|
s.t. g{j in J}: sum{i in I} x[i,j] = demand[j];
|
|
/* satisfy demand at customer j */
|
|
|
|
var y{i in I, j in J}, binary;
|
|
/* y[i,j] = 1 means some amount is shipped from i to j */
|
|
|
|
s.t. h{i in I, j in J}: x[i,j] <= min(supply[i], demand[j]) * y[i,j];
|
|
/* if y[i,j] is 0, force x[i,j] to be 0 (may note that supply[i] and
|
|
demand[j] are implicit upper bounds for x[i,j] as follows from the
|
|
constraints f[i] and g[j]) */
|
|
|
|
minimize cost: sum{i in I, j in J} varcost[i,j] * x[i,j] +
|
|
sum{i in I, j in J} fixcost[i,j] * y[i,j];
|
|
/* total transportation costs */
|
|
|
|
data;
|
|
|
|
/* These data correspond to the instance bal8x12 from [Balinski]. */
|
|
|
|
/* The optimal solution is 471.55 */
|
|
|
|
param m := 8;
|
|
|
|
param n := 12;
|
|
|
|
param supply := 1 15.00, 2 20.00, 3 45.00, 4 35.00,
|
|
5 25.00, 6 35.00, 7 10.00, 8 25.00;
|
|
|
|
param demand := 1 20.00, 2 15.00, 3 20.00, 4 15.00,
|
|
5 5.00, 6 20.00, 7 30.00, 8 10.00,
|
|
9 35.00, 10 25.00, 11 10.00, 12 5.00;
|
|
|
|
param varcost
|
|
: 1 2 3 4 5 6 7 8 9 10 11 12 :=
|
|
1 0.69 0.64 0.71 0.79 1.70 2.83 2.02 5.64 5.94 5.94 5.94 7.68
|
|
2 1.01 0.75 0.88 0.59 1.50 2.63 2.26 5.64 5.85 5.62 5.85 4.94
|
|
3 1.05 1.06 1.08 0.64 1.22 2.37 1.66 5.64 5.91 5.62 5.91 4.94
|
|
4 1.94 1.50 1.56 1.22 1.98 1.98 1.36 6.99 6.99 6.99 6.99 3.68
|
|
5 1.61 1.40 1.61 1.33 1.68 2.83 1.54 4.26 4.26 4.26 4.26 2.99
|
|
6 5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.31 0.21 0.17 0.31 1.53
|
|
7 5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.55 0.35 0.40 0.19 1.53
|
|
8 5.29 6.08 6.08 5.29 5.96 6.45 5.08 2.43 2.30 2.33 1.81 2.50 ;
|
|
|
|
param fixcost
|
|
: 1 2 3 4 5 6 7 8 9 10 11 12 :=
|
|
1 11.0 16.0 18.0 17.0 10.0 20.0 17.0 13.0 15.0 12.0 14.0 14.0
|
|
2 14.0 17.0 17.0 13.0 15.0 13.0 16.0 11.0 20.0 11.0 15.0 10.0
|
|
3 12.0 13.0 20.0 17.0 13.0 15.0 16.0 13.0 12.0 13.0 10.0 18.0
|
|
4 16.0 19.0 16.0 11.0 15.0 12.0 18.0 12.0 18.0 13.0 13.0 14.0
|
|
5 19.0 18.0 15.0 16.0 12.0 14.0 20.0 19.0 11.0 17.0 16.0 18.0
|
|
6 13.0 20.0 20.0 17.0 15.0 12.0 14.0 11.0 12.0 19.0 15.0 16.0
|
|
7 11.0 12.0 15.0 10.0 17.0 11.0 11.0 16.0 10.0 18.0 17.0 12.0
|
|
8 17.0 10.0 20.0 12.0 17.0 20.0 16.0 15.0 10.0 12.0 16.0 18.0 ;
|
|
|
|
end;
|