You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

286 lines
9.6 KiB

#include <cuda.h>
#include <stdlib.h>
#include <stdio.h>
#include <chrono>
#include <iostream>
__global__ void cuda_kernel_basicAdd(int a, int b, int *c) {
*c = a + b;
}
__global__ void cuda_kernel_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
// Fused Multiply Add:
// A * B + C => D
/*
*Die Variable i dient für den Zugriff auf das Array. Da jeder Thread die Funktion VecAdd
*ausführt, muss i für jeden Thread unterschiedlich sein. Ansonsten würden unterschiedliche
*Threads auf denselben Index im Array schreiben. blockDim.x ist die Anzahl der Threads der x-Komponente
*des Blocks, blockIdx.x ist die x-Koordinate des aktuellen Blocks und threadIdx.x ist die x-Koordinate des
*Threads, der die Funktion gerade ausführt.
*/
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) {
D[i] = A[i] * B[i] + C[i];
}
}
__global__ void cuda_kernel_arrayFmaOptimized(int * const A, int const N, int const M) {
// Fused Multiply Add:
// A * B + C => D
// Layout:
// A B C D A B C D A B C D
int i = blockDim.x * blockIdx.x + threadIdx.x;
if ((i*M) < N) {
for (int j = i*M; j < i*M + M; ++j) {
A[j*4 + 3] = A[j*4] * A[j*4 + 1] + A[j*4 + 2];
}
}
}
extern "C" int cuda_basicAdd(int a, int b) {
int c = 0;
int *dev_c;
cudaMalloc((void**)&dev_c, sizeof(int));
cuda_kernel_basicAdd<<<1, 1>>>(a, b, dev_c);
cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
//printf("%d + %d + 42 is %d\n", a, b, c);
cudaFree(dev_c);
return c;
}
void cpp_cuda_bandwidthTest(int entryCount, int N) {
// Size of the Arrays
size_t arraySize = entryCount * sizeof(int);
int* deviceIntArray;
int* hostIntArray = new int[arraySize];
// Allocate space on the device
auto start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes!" << std::endl;
delete[] hostIntArray;
return;
}
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
delete[] hostIntArray;
return;
}
}
auto end_time = std::chrono::high_resolution_clock::now();
auto copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
double mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Allocating the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second Allocationspeed." << std::endl;
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes for copyTest!" << std::endl;
delete[] hostIntArray;
return;
}
// Prepare data
for (int i = 0; i < N; ++i) {
hostIntArray[i] = i * 333 + 123;
}
// Copy data TO device
start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMemcpy(deviceIntArray, hostIntArray, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to device!" << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
return;
}
}
end_time = std::chrono::high_resolution_clock::now();
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second TO device." << std::endl;
// Copy data FROM device
start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMemcpy(hostIntArray, deviceIntArray, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to host!" << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
return;
}
}
end_time = std::chrono::high_resolution_clock::now();
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second FROM device." << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
}
extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
// Size of the Arrays
size_t arraySize = N * sizeof(int);
int* deviceIntArrayA;
int* deviceIntArrayB;
int* deviceIntArrayC;
int* deviceIntArrayD;
// Allocate space on the device
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc1!\n");
return;
}
if (cudaMalloc((void**)&deviceIntArrayB, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc2!\n");
cudaFree(deviceIntArrayA);
return;
}
if (cudaMalloc((void**)&deviceIntArrayC, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc3!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
return;
}
if (cudaMalloc((void**)&deviceIntArrayD, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc4!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
return;
}
// Copy data TO device
if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
if (cudaMemcpy(deviceIntArrayB, B, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
if (cudaMemcpy(deviceIntArrayC, C, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
// Festlegung der Threads pro Block
int threadsPerBlock = 512;
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
// Run kernel
cuda_kernel_arrayFma<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, deviceIntArrayB, deviceIntArrayC, deviceIntArrayD, N);
// Copy data FROM device
if (cudaMemcpy(D, deviceIntArrayD, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
// Free memory on device
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
}
extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M) {
// Size of the Arrays
size_t arraySize = N * sizeof(int) * 4;
int* deviceIntArrayA;
// Allocate space on the device
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc1!\n");
return;
}
#define ONFAILFREE0() do { } while(0)
#define ONFAILFREE1(a) do { cudaFree(a); } while(0)
#define ONFAILFREE2(a, b) do { cudaFree(a); cudaFree(b); } while(0)
#define ONFAILFREE3(a, b, c) do { cudaFree(a); cudaFree(b); cudaFree(c); } while(0)
#define ONFAILFREE4(a, b, c, d) do { cudaFree(a); cudaFree(b); cudaFree(c); cudaFree(d); } while(0)
#define CHECKED_CUDA_CALL(func__, freeArgs, ...) do { int retCode = cuda##func__ (__VA_ARGS__); if (retCode != cudaSuccess) { freeArgs; printf("Error in func__!\n"); return; } } while(0)
// Copy data TO device
CHECKED_CUDA_CALL(Memcpy, ONFAILFREE1(deviceIntArrayA), deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice);
/*if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
return;
}*/
// Festlegung der Threads pro Block
int threadsPerBlock = 512;
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
// Run kernel
cuda_kernel_arrayFmaOptimized<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, N, M);
// Copy data FROM device
if (cudaMemcpy(A, deviceIntArrayA, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
return;
}
// Free memory on device
if (cudaFree(deviceIntArrayA) != cudaSuccess) {
printf("Error in cudaFree!\n");
return;
}
}
extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
for (int i = 0; i < N; ++i) {
D[i] = A[i] * B[i] + C[i];
}
}
extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N) {
for (int i = 0; i < N; i += 4) {
A[i+3] = A[i] * A[i+1] + A[i+2];
}
}