You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
5.7 KiB
174 lines
5.7 KiB
from __future__ import annotations
|
|
|
|
from minigrid.core.constants import COLOR_NAMES
|
|
from minigrid.core.grid import Grid
|
|
from minigrid.core.mission import MissionSpace
|
|
from minigrid.core.world_object import Door, Goal, Key, Wall
|
|
from minigrid.minigrid_env import MiniGridEnv
|
|
|
|
|
|
class LockedRoom:
|
|
def __init__(self, top, size, doorPos):
|
|
self.top = top
|
|
self.size = size
|
|
self.doorPos = doorPos
|
|
self.color = None
|
|
self.locked = False
|
|
|
|
def rand_pos(self, env):
|
|
topX, topY = self.top
|
|
sizeX, sizeY = self.size
|
|
return env._rand_pos(topX + 1, topX + sizeX - 1, topY + 1, topY + sizeY - 1)
|
|
|
|
|
|
class LockedRoomEnv(MiniGridEnv):
|
|
|
|
"""
|
|
## Description
|
|
|
|
The environment has six rooms, one of which is locked. The agent receives
|
|
a textual mission string as input, telling it which room to go to in order
|
|
to get the key that opens the locked room. It then has to go into the locked
|
|
room in order to reach the final goal. This environment is extremely
|
|
difficult to solve with vanilla reinforcement learning alone.
|
|
|
|
## Mission Space
|
|
|
|
"get the {lockedroom_color} key from the {keyroom_color} room, unlock the {door_color} door and go to the goal"
|
|
|
|
{lockedroom_color}, {keyroom_color}, and {door_color} can be "red", "green",
|
|
"blue", "purple", "yellow" or "grey".
|
|
|
|
## Action Space
|
|
|
|
| Num | Name | Action |
|
|
|-----|--------------|---------------------------|
|
|
| 0 | left | Turn left |
|
|
| 1 | right | Turn right |
|
|
| 2 | forward | Move forward |
|
|
| 3 | pickup | Pick up an object |
|
|
| 4 | drop | Unused |
|
|
| 5 | toggle | Toggle/activate an object |
|
|
| 6 | done | Unused |
|
|
|
|
## Observation Encoding
|
|
|
|
- Each tile is encoded as a 3 dimensional tuple:
|
|
`(OBJECT_IDX, COLOR_IDX, STATE)`
|
|
- `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
|
|
[minigrid/minigrid.py](minigrid/minigrid.py)
|
|
- `STATE` refers to the door state with 0=open, 1=closed and 2=locked
|
|
|
|
## Rewards
|
|
|
|
A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
|
|
|
|
## Termination
|
|
|
|
The episode ends if any one of the following conditions is met:
|
|
|
|
1. The agent reaches the goal.
|
|
2. Timeout (see `max_steps`).
|
|
|
|
## Registered Configurations
|
|
|
|
- `MiniGrid-LockedRoom-v0`
|
|
|
|
"""
|
|
|
|
def __init__(self, size=19, max_steps: int | None = None, **kwargs):
|
|
self.size = size
|
|
|
|
if max_steps is None:
|
|
max_steps = 10 * size
|
|
mission_space = MissionSpace(
|
|
mission_func=self._gen_mission,
|
|
ordered_placeholders=[COLOR_NAMES] * 3,
|
|
)
|
|
super().__init__(
|
|
mission_space=mission_space,
|
|
width=size,
|
|
height=size,
|
|
max_steps=max_steps,
|
|
**kwargs,
|
|
)
|
|
|
|
@staticmethod
|
|
def _gen_mission(lockedroom_color: str, keyroom_color: str, door_color: str):
|
|
return (
|
|
f"get the {lockedroom_color} key from the {keyroom_color} room,"
|
|
f" unlock the {door_color} door and go to the goal"
|
|
)
|
|
|
|
def _gen_grid(self, width, height):
|
|
# Create the grid
|
|
self.grid = Grid(width, height)
|
|
|
|
# Generate the surrounding walls
|
|
for i in range(0, width):
|
|
self.grid.set(i, 0, Wall())
|
|
self.grid.set(i, height - 1, Wall())
|
|
for j in range(0, height):
|
|
self.grid.set(0, j, Wall())
|
|
self.grid.set(width - 1, j, Wall())
|
|
|
|
# Hallway walls
|
|
lWallIdx = width // 2 - 2
|
|
rWallIdx = width // 2 + 2
|
|
for j in range(0, height):
|
|
self.grid.set(lWallIdx, j, Wall())
|
|
self.grid.set(rWallIdx, j, Wall())
|
|
|
|
self.rooms = []
|
|
|
|
# Room splitting walls
|
|
for n in range(0, 3):
|
|
j = n * (height // 3)
|
|
for i in range(0, lWallIdx):
|
|
self.grid.set(i, j, Wall())
|
|
for i in range(rWallIdx, width):
|
|
self.grid.set(i, j, Wall())
|
|
|
|
roomW = lWallIdx + 1
|
|
roomH = height // 3 + 1
|
|
self.rooms.append(LockedRoom((0, j), (roomW, roomH), (lWallIdx, j + 3)))
|
|
self.rooms.append(
|
|
LockedRoom((rWallIdx, j), (roomW, roomH), (rWallIdx, j + 3))
|
|
)
|
|
|
|
# Choose one random room to be locked
|
|
lockedRoom = self._rand_elem(self.rooms)
|
|
lockedRoom.locked = True
|
|
goalPos = lockedRoom.rand_pos(self)
|
|
self.grid.set(*goalPos, Goal())
|
|
|
|
# Assign the door colors
|
|
colors = set(COLOR_NAMES)
|
|
for room in self.rooms:
|
|
color = self._rand_elem(sorted(colors))
|
|
colors.remove(color)
|
|
room.color = color
|
|
if room.locked:
|
|
self.grid.set(*room.doorPos, Door(color, is_locked=True))
|
|
else:
|
|
self.grid.set(*room.doorPos, Door(color))
|
|
|
|
# Select a random room to contain the key
|
|
while True:
|
|
keyRoom = self._rand_elem(self.rooms)
|
|
if keyRoom != lockedRoom:
|
|
break
|
|
keyPos = keyRoom.rand_pos(self)
|
|
self.grid.set(*keyPos, Key(lockedRoom.color))
|
|
|
|
# Randomize the player start position and orientation
|
|
self.agent_pos = self.place_agent(
|
|
top=(lWallIdx, 0), size=(rWallIdx - lWallIdx, height)
|
|
)
|
|
|
|
# Generate the mission string
|
|
self.mission = (
|
|
"get the %s key from the %s room, "
|
|
"unlock the %s door and "
|
|
"go to the goal"
|
|
) % (lockedRoom.color, keyRoom.color, lockedRoom.color)
|