You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
3.8 KiB
238 lines
3.8 KiB
|
|
|
|
%module RationalT
|
|
%{
|
|
#include <carl/core/Monomial.h>
|
|
#include <carl/core/Term.h>
|
|
#include <carl/core/MultivariatePolynomial.h>
|
|
#include <carl/core/RationalFunction.h>
|
|
#include <carl/numbers/numbers.h>
|
|
#include "gmp.h"
|
|
#include "gmpxx.h"
|
|
|
|
|
|
typedef mpq_class Rational;
|
|
|
|
typedef carl::Term<Rational> Term;
|
|
|
|
typedef carl::MultivariatePolynomial<Rational> Polynomial;
|
|
typedef carl::RationalFunction<Polynomial> RationalFunction;
|
|
|
|
%}
|
|
|
|
|
|
|
|
|
|
%include "std_string.i"
|
|
%import "monomial.i"
|
|
%import "variable.i"
|
|
%import "term.i"
|
|
%import "polynomial.i"
|
|
%import "rationalfunction.i"
|
|
|
|
|
|
namespace carl {
|
|
typedef long sint;
|
|
}
|
|
|
|
|
|
%rename(Rational) mpq_class;
|
|
|
|
class mpq_class {
|
|
//NOTE: maybe change this to getDouble or whatever..
|
|
%rename(toDouble) get_d;
|
|
public:
|
|
mpq_class(signed int i) { mpq_init(mp); mpq_set_si(mp, i, 1); }
|
|
mpq_class(double d) { mpq_init(mp); mpq_set_d(mp, d); }
|
|
explicit mpq_class(const std::string &s, int base = 0)
|
|
{
|
|
mpq_init(mp);
|
|
if (mpq_set_str (mp, s.c_str(), base) != 0)
|
|
{
|
|
mpq_clear (mp);
|
|
throw std::invalid_argument ("mpq_set_str");
|
|
}
|
|
}
|
|
|
|
double get_d() const;
|
|
|
|
%extend{
|
|
std::string toString() {
|
|
return carl::toString(*$self,true);
|
|
}
|
|
|
|
|
|
|
|
int nominator() {
|
|
return carl::toInt<carl::sint>(carl::getNum(*$self));
|
|
}
|
|
|
|
int numerator() {
|
|
return carl::toInt<carl::sint>(carl::getNum(*$self));
|
|
}
|
|
|
|
int denominator() {
|
|
return carl::toInt<carl::sint>(carl::getDenom(*$self));
|
|
}
|
|
|
|
|
|
carl::sint toInt() {
|
|
double d = carl::toDouble(*$self);
|
|
return static_cast<carl::sint>(d);
|
|
}
|
|
|
|
|
|
|
|
Polynomial add(const Polynomial & rhs) {
|
|
return *$self+rhs;
|
|
}
|
|
|
|
Polynomial add(const Term& rhs) {
|
|
return *$self+rhs;
|
|
}
|
|
|
|
Polynomial add(const carl::Monomial::Arg& rhs) {
|
|
return *$self+rhs;
|
|
}
|
|
|
|
|
|
Polynomial add(carl::Variable::Arg rhs) {
|
|
return *$self+rhs;
|
|
}
|
|
|
|
|
|
Rational add(const Rational& rhs) {
|
|
return *$self+rhs;
|
|
}
|
|
|
|
|
|
|
|
Polynomial sub(const Polynomial & rhs) {
|
|
return *$self-rhs;
|
|
}
|
|
|
|
Polynomial sub(const Term& rhs) {
|
|
return *$self-rhs;
|
|
}
|
|
|
|
Polynomial sub(const carl::Monomial::Arg& rhs) {
|
|
return *$self-rhs;
|
|
}
|
|
|
|
|
|
Polynomial sub(carl::Variable::Arg rhs) {
|
|
return *$self-rhs;
|
|
}
|
|
|
|
|
|
Rational sub(const Rational& rhs) {
|
|
return *$self-rhs;
|
|
}
|
|
|
|
|
|
Polynomial mul(const Polynomial & rhs) {
|
|
return *$self*rhs;
|
|
}
|
|
|
|
Term mul(const Term& rhs) {
|
|
return *$self*rhs;
|
|
}
|
|
|
|
Term mul(const carl::Monomial::Arg& rhs) {
|
|
return *$self*rhs;
|
|
}
|
|
|
|
|
|
Term mul(carl::Variable::Arg rhs) {
|
|
return *$self*rhs;
|
|
}
|
|
|
|
|
|
Rational mul(const Rational& rhs) {
|
|
return *$self*rhs;
|
|
}
|
|
|
|
|
|
RationalFunction div(const RationalFunction& rhs) {
|
|
return RationalFunction(*$self) / rhs;
|
|
}
|
|
|
|
RationalFunction div(const Polynomial& rhs) {
|
|
return RationalFunction(*$self) / rhs;
|
|
}
|
|
|
|
RationalFunction div(const Term& rhs) {
|
|
return RationalFunction(*$self) / rhs;
|
|
}
|
|
|
|
RationalFunction div(const carl::Monomial::Arg& rhs) {
|
|
return RationalFunction(*$self) / rhs;
|
|
}
|
|
|
|
|
|
RationalFunction div(carl::Variable::Arg rhs) {
|
|
return RationalFunction(*$self) / rhs;
|
|
}
|
|
|
|
|
|
Rational div(const Rational& rhs) {
|
|
if (carl::isZero(rhs)) throw std::runtime_error("Div by zero");
|
|
return *$self / rhs;
|
|
}
|
|
|
|
Rational pow(std::size_t exp) {
|
|
return pow($self->get_d(),exp);
|
|
}
|
|
|
|
Rational neg() {
|
|
return -(*$self);
|
|
}
|
|
|
|
Rational abs() {
|
|
return abs(*$self);
|
|
}
|
|
|
|
bool equals(const Rational& rhs) {
|
|
return *$self==rhs;
|
|
}
|
|
|
|
bool notEquals(const Rational& rhs) {
|
|
return *$self!=rhs;
|
|
}
|
|
|
|
|
|
bool lessEquals(const Rational& rhs) {
|
|
return *$self<=rhs;
|
|
}
|
|
|
|
bool greaterEquals(const Rational& rhs) {
|
|
return *$self>=rhs;
|
|
}
|
|
|
|
|
|
bool less(const Rational& rhs) {
|
|
return *$self<rhs;
|
|
}
|
|
|
|
bool greater(const Rational& rhs) {
|
|
return *$self>rhs;
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
typedef mpq_class Rational;
|
|
|
|
/*
|
|
typedef carl::Term<Rational> Term;
|
|
|
|
typedef carl::MultivariatePolynomial<Rational> Polynomial;
|
|
typedef carl::RationalFunction<Polynomial> RationalFunction; */
|