You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
5.4 KiB
165 lines
5.4 KiB
from __future__ import annotations
|
|
|
|
import numpy as np
|
|
|
|
from minigrid.core.actions import Actions
|
|
from minigrid.core.grid import Grid
|
|
from minigrid.core.mission import MissionSpace
|
|
from minigrid.core.world_object import Ball, Key, Wall
|
|
from minigrid.minigrid_env import MiniGridEnv
|
|
|
|
|
|
class MemoryEnv(MiniGridEnv):
|
|
|
|
"""
|
|
## Description
|
|
|
|
This environment is a memory test. The agent starts in a small room where it
|
|
sees an object. It then has to go through a narrow hallway which ends in a
|
|
split. At each end of the split there is an object, one of which is the same
|
|
as the object in the starting room. The agent has to remember the initial
|
|
object, and go to the matching object at split.
|
|
|
|
## Mission Space
|
|
|
|
"go to the matching object at the end of the hallway"
|
|
|
|
## Action Space
|
|
|
|
| Num | Name | Action |
|
|
|-----|--------------|---------------------------|
|
|
| 0 | left | Turn left |
|
|
| 1 | right | Turn right |
|
|
| 2 | forward | Move forward |
|
|
| 3 | pickup | Pick up an object |
|
|
| 4 | drop | Unused |
|
|
| 5 | toggle | Toggle/activate an object |
|
|
| 6 | done | Unused |
|
|
|
|
## Observation Encoding
|
|
|
|
- Each tile is encoded as a 3 dimensional tuple:
|
|
`(OBJECT_IDX, COLOR_IDX, STATE)`
|
|
- `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
|
|
[minigrid/minigrid.py](minigrid/minigrid.py)
|
|
- `STATE` refers to the door state with 0=open, 1=closed and 2=locked
|
|
|
|
## Rewards
|
|
|
|
A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
|
|
|
|
## Termination
|
|
|
|
The episode ends if any one of the following conditions is met:
|
|
|
|
1. The agent reaches the correct matching object.
|
|
2. The agent reaches the wrong matching object.
|
|
3. Timeout (see `max_steps`).
|
|
|
|
## Registered Configurations
|
|
|
|
S: size of map SxS.
|
|
|
|
- `MiniGrid-MemoryS17Random-v0`
|
|
- `MiniGrid-MemoryS13Random-v0`
|
|
- `MiniGrid-MemoryS13-v0`
|
|
- `MiniGrid-MemoryS11-v0`
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self, size=8, random_length=False, max_steps: int | None = None, **kwargs
|
|
):
|
|
self.size = size
|
|
self.random_length = random_length
|
|
|
|
if max_steps is None:
|
|
max_steps = 5 * size**2
|
|
|
|
mission_space = MissionSpace(mission_func=self._gen_mission)
|
|
super().__init__(
|
|
mission_space=mission_space,
|
|
width=size,
|
|
height=size,
|
|
# Set this to True for maximum speed
|
|
see_through_walls=False,
|
|
max_steps=max_steps,
|
|
**kwargs,
|
|
)
|
|
|
|
@staticmethod
|
|
def _gen_mission():
|
|
return "go to the matching object at the end of the hallway"
|
|
|
|
def _gen_grid(self, width, height):
|
|
self.grid = Grid(width, height)
|
|
|
|
# Generate the surrounding walls
|
|
self.grid.horz_wall(0, 0)
|
|
self.grid.horz_wall(0, height - 1)
|
|
self.grid.vert_wall(0, 0)
|
|
self.grid.vert_wall(width - 1, 0)
|
|
|
|
assert height % 2 == 1
|
|
upper_room_wall = height // 2 - 2
|
|
lower_room_wall = height // 2 + 2
|
|
if self.random_length:
|
|
hallway_end = self._rand_int(4, width - 2)
|
|
else:
|
|
hallway_end = width - 3
|
|
|
|
# Start room
|
|
for i in range(1, 5):
|
|
self.grid.set(i, upper_room_wall, Wall())
|
|
self.grid.set(i, lower_room_wall, Wall())
|
|
self.grid.set(4, upper_room_wall + 1, Wall())
|
|
self.grid.set(4, lower_room_wall - 1, Wall())
|
|
|
|
# Horizontal hallway
|
|
for i in range(5, hallway_end):
|
|
self.grid.set(i, upper_room_wall + 1, Wall())
|
|
self.grid.set(i, lower_room_wall - 1, Wall())
|
|
|
|
# Vertical hallway
|
|
for j in range(0, height):
|
|
if j != height // 2:
|
|
self.grid.set(hallway_end, j, Wall())
|
|
self.grid.set(hallway_end + 2, j, Wall())
|
|
|
|
# Fix the player's start position and orientation
|
|
self.agent_pos = np.array((self._rand_int(1, hallway_end + 1), height // 2))
|
|
self.agent_dir = 0
|
|
|
|
# Place objects
|
|
start_room_obj = self._rand_elem([Key, Ball])
|
|
self.grid.set(1, height // 2 - 1, start_room_obj("green"))
|
|
|
|
other_objs = self._rand_elem([[Ball, Key], [Key, Ball]])
|
|
pos0 = (hallway_end + 1, height // 2 - 2)
|
|
pos1 = (hallway_end + 1, height // 2 + 2)
|
|
self.grid.set(*pos0, other_objs[0]("green"))
|
|
self.grid.set(*pos1, other_objs[1]("green"))
|
|
|
|
# Choose the target objects
|
|
if start_room_obj == other_objs[0]:
|
|
self.success_pos = (pos0[0], pos0[1] + 1)
|
|
self.failure_pos = (pos1[0], pos1[1] - 1)
|
|
else:
|
|
self.success_pos = (pos1[0], pos1[1] - 1)
|
|
self.failure_pos = (pos0[0], pos0[1] + 1)
|
|
|
|
self.mission = "go to the matching object at the end of the hallway"
|
|
|
|
def step(self, action):
|
|
if action == Actions.pickup:
|
|
action = Actions.toggle
|
|
obs, reward, terminated, truncated, info = super().step(action)
|
|
|
|
if tuple(self.agent_pos) == self.success_pos:
|
|
reward = self._reward()
|
|
terminated = True
|
|
if tuple(self.agent_pos) == self.failure_pos:
|
|
reward = 0
|
|
terminated = True
|
|
|
|
return obs, reward, terminated, truncated, info
|