import sys if sys.version_info[0] == 2: raise ImportError('Python 2.x is not supported for stormpy.') from . import core from .core import * from . import storage from .storage import * from ._config import * from .logic import * from .exceptions import * from pycarl import Variable # needed for building parametric models __version__ = "unknown" try: from ._version import __version__ except ImportError: # We're running in a tree that doesn't have a _version.py, so we don't know what our version is. pass core._set_up("") def _convert_sparse_model(model, parametric=False): """ Convert (parametric) model in sparse representation into model corresponding to exact model type. :param model: Sparse model. :param parametric: Flag indicating if the model is parametric. :return: Model corresponding to exact model type. """ if parametric: assert model.supports_parameters if model.model_type == ModelType.DTMC: return model._as_sparse_pdtmc() elif model.model_type == ModelType.MDP: return model._as_sparse_pmdp() elif model.model_type == ModelType.POMDP: return model._as_sparse_ppomdp() elif model.model_type == ModelType.CTMC: return model._as_sparse_pctmc() elif model.model_type == ModelType.MA: return model._as_sparse_pma() else: raise StormError("Not supported parametric model constructed") else: assert not model.supports_parameters if model.model_type == ModelType.DTMC: return model._as_sparse_dtmc() elif model.model_type == ModelType.MDP: return model._as_sparse_mdp() elif model.model_type == ModelType.POMDP: return model._as_sparse_pomdp() elif model.model_type == ModelType.CTMC: return model._as_sparse_ctmc() elif model.model_type == ModelType.MA: return model._as_sparse_ma() else: raise StormError("Not supported non-parametric model constructed") def _convert_symbolic_model(model, parametric=False): """ Convert (parametric) model in symbolic representation into model corresponding to exact model type. :param model: Symbolic model. :param parametric: Flag indicating if the model is parametric. :return: Model corresponding to exact model type. """ if parametric: assert model.supports_parameters if model.model_type == ModelType.DTMC: return model._as_symbolic_pdtmc() elif model.model_type == ModelType.MDP: return model._as_symbolic_pmdp() elif model.model_type == ModelType.CTMC: return model._as_symbolic_pctmc() elif model.model_type == ModelType.MA: return model._as_symbolic_pma() else: raise StormError("Not supported parametric model constructed") else: assert not model.supports_parameters if model.model_type == ModelType.DTMC: return model._as_symbolic_dtmc() elif model.model_type == ModelType.MDP: return model._as_symbolic_mdp() elif model.model_type == ModelType.CTMC: return model._as_symbolic_ctmc() elif model.model_type == ModelType.MA: return model._as_symbolic_ma() else: raise StormError("Not supported non-parametric model constructed") def build_model(symbolic_description, properties=None): """ Build a model in sparse representation from a symbolic description. :param symbolic_description: Symbolic model description to translate into a model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. :return: Model in sparse representation. """ return build_sparse_model(symbolic_description, properties=properties) def build_parametric_model(symbolic_description, properties=None): """ Build a parametric model in sparse representation from a symbolic description. :param symbolic_description: Symbolic model description to translate into a model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. :return: Parametric model in sparse representation. """ return build_sparse_parametric_model(symbolic_description, properties=properties) def build_sparse_model(symbolic_description, properties=None): """ Build a model in sparse representation from a symbolic description. :param symbolic_description: Symbolic model description to translate into a model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. :return: Model in sparse representation. """ if not symbolic_description.undefined_constants_are_graph_preserving: raise StormError("Program still contains undefined constants") if properties: formulae = [(prop.raw_formula if isinstance(prop, Property) else prop) for prop in properties] intermediate = core._build_sparse_model_from_symbolic_description(symbolic_description, formulae) else: intermediate = core._build_sparse_model_from_symbolic_description(symbolic_description) return _convert_sparse_model(intermediate, parametric=False) def build_sparse_parametric_model(symbolic_description, properties=None): """ Build a parametric model in sparse representation from a symbolic description. :param symbolic_description: Symbolic model description to translate into a model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. :return: Parametric model in sparse representation. """ if not symbolic_description.undefined_constants_are_graph_preserving: raise StormError("Program still contains undefined constants") if properties: formulae = [(prop.raw_formula if isinstance(prop, Property) else prop) for prop in properties] intermediate = core._build_sparse_parametric_model_from_symbolic_description(symbolic_description, formulae) else: intermediate = core._build_sparse_parametric_model_from_symbolic_description(symbolic_description) return _convert_sparse_model(intermediate, parametric=True) def build_symbolic_model(symbolic_description, properties=None): """ Build a model in symbolic representation from a symbolic description. :param symbolic_description: Symbolic model description to translate into a model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. :return: Model in symbolic representation. """ if not symbolic_description.undefined_constants_are_graph_preserving: raise StormError("Program still contains undefined constants") if properties: formulae = [(prop.raw_formula if isinstance(prop, Property) else prop) for prop in properties] intermediate = core._build_symbolic_model_from_symbolic_description(symbolic_description, formulae) else: intermediate = core._build_symbolic_model_from_symbolic_description(symbolic_description) return _convert_symbolic_model(intermediate, parametric=False) def build_symbolic_parametric_model(symbolic_description, properties=None): """ Build a parametric model in symbolic representation from a symbolic description. :param symbolic_description: Symbolic model description to translate into a model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. :return: Parametric model in symbolic representation. """ if not symbolic_description.undefined_constants_are_graph_preserving: raise StormError("Program still contains undefined constants") if properties: formulae = [(prop.raw_formula if isinstance(prop, Property) else prop) for prop in properties] intermediate = core._build_symbolic_parametric_model_from_symbolic_description(symbolic_description, formulae) else: intermediate = core._build_symbolic_parametric_model_from_symbolic_description(symbolic_description) return _convert_symbolic_model(intermediate, parametric=True) def build_model_from_drn(file, options = DirectEncodingParserOptions()): """ Build a model in sparse representation from the explicit DRN representation. :param String file: DRN file containing the model. :param DirectEncodingParserOptions: Options for the parser. :return: Model in sparse representation. """ intermediate = core._build_sparse_model_from_drn(file, options) return _convert_sparse_model(intermediate, parametric=False) def build_parametric_model_from_drn(file, options = DirectEncodingParserOptions()): """ Build a parametric model in sparse representation from the explicit DRN representation. :param String file: DRN file containing the model. :param DirectEncodingParserOptions: Options for the parser. :return: Parametric model in sparse representation. """ intermediate = core._build_sparse_parametric_model_from_drn(file, options) return _convert_sparse_model(intermediate, parametric=True) def perform_bisimulation(model, properties, bisimulation_type): """ Perform bisimulation on model. :param model: Model. :param properties: Properties to preserve during bisimulation. :param bisimulation_type: Type of bisimulation (weak or strong). :return: Model after bisimulation. """ return perform_sparse_bisimulation(model, properties, bisimulation_type) def perform_sparse_bisimulation(model, properties, bisimulation_type): """ Perform bisimulation on model in sparse representation. :param model: Model. :param properties: Properties to preserve during bisimulation. :param bisimulation_type: Type of bisimulation (weak or strong). :return: Model after bisimulation. """ formulae = [(prop.raw_formula if isinstance(prop, Property) else prop) for prop in properties] if model.supports_parameters: return core._perform_parametric_bisimulation(model, formulae, bisimulation_type) else: return core._perform_bisimulation(model, formulae, bisimulation_type) def perform_symbolic_bisimulation(model, properties): """ Perform bisimulation on model in symbolic representation. :param model: Model. :param properties: Properties to preserve during bisimulation. :return: Model after bisimulation. """ formulae = [(prop.raw_formula if isinstance(prop, Property) else prop) for prop in properties] bisimulation_type = BisimulationType.STRONG if model.supports_parameters: return core._perform_symbolic_parametric_bisimulation(model, formulae, bisimulation_type) else: return core._perform_symbolic_bisimulation(model, formulae, bisimulation_type) def model_checking(model, property, only_initial_states=False, extract_scheduler=False, force_fully_observable=False, environment=Environment(), shield_expression=None): """ Perform model checking on model for property. :param model: Model. :param property: Property to check for. :param only_initial_states: If True, only results for initial states are computed, otherwise for all states. :param extract_scheduler: If True, try to extract a scheduler :return: Model checking result. :rtype: CheckResult """ if model.is_sparse_model: return check_model_sparse(model, property, only_initial_states=only_initial_states, extract_scheduler=extract_scheduler, force_fully_observable=force_fully_observable, environment=environment, shield_expression=shield_expression) else: assert (model.is_symbolic_model) if extract_scheduler: raise StormError("Model checking based on dd engine does not support extracting schedulers right now.") return check_model_dd(model, property, only_initial_states=only_initial_states, environment=environment) def check_model_sparse(model, property, only_initial_states=False, extract_scheduler=False, force_fully_observable=False, environment=Environment(), shield_expression=None): """ Perform model checking on model for property. :param model: Model. :param property: Property to check for. :param only_initial_states: If True, only results for initial states are computed, otherwise for all states. :param extract_scheduler: If True, try to extract a scheduler :param force_fully_observable: If True, treat a POMDP as an MDP :return: Model checking result. :rtype: CheckResult """ if isinstance(property, Property): formula = property.raw_formula else: formula = property if force_fully_observable: if model.is_partially_observable: # Note that casting a model to a fully observable model wont work with python/pybind, so we actually have other access points if model.supports_parameters: raise NotImplementedError("") elif model.is_exact: task = core.ExactCheckTask(formula, only_initial_states) task.set_produce_schedulers(extract_scheduler) return core._exact_model_checking_fully_observable(model, task, environment=environment) else: task = core.CheckTask(formula, only_initial_states) task.set_produce_schedulers(extract_scheduler) return core._model_checking_fully_observable(model, task, environment=environment) else: raise RuntimeError("Forcing models that are fully observable is not possible") if model.supports_parameters: task = core.ParametricCheckTask(formula, only_initial_states) task.set_produce_schedulers(extract_scheduler) return core._parametric_model_checking_sparse_engine(model, task, environment=environment) else: if model.is_exact: task = core.ExactCheckTask(formula, only_initial_states) task.set_produce_schedulers(extract_scheduler) return core._exact_model_checking_sparse_engine(model, task, environment=environment) else: task = core.CheckTask(formula, only_initial_states) task.set_produce_schedulers(extract_scheduler) if shield_expression is not None: task.set_shielding_expression(shield_expression) return core._model_checking_sparse_engine(model, task, environment=environment) def check_model_dd(model, property, only_initial_states=False, environment=Environment()): """ Perform model checking using dd engine. :param model: Model. :param property: Property to check for. :param only_initial_states: If True, only results for initial states are computed, otherwise for all states. :return: Model checking result. :rtype: CheckResult """ if isinstance(property, Property): formula = property.raw_formula else: formula = property if model.supports_parameters: task = core.ParametricCheckTask(formula, only_initial_states) return core._parametric_model_checking_dd_engine(model, task, environment=environment) else: task = core.CheckTask(formula, only_initial_states) return core._model_checking_dd_engine(model, task, environment=environment) def check_model_hybrid(model, property, only_initial_states=False, environment=Environment()): """ Perform model checking using hybrid engine. :param model: Model. :param property: Property to check for. :param only_initial_states: If True, only results for initial states are computed, otherwise for all states. :return: Model checking result. :rtype: CheckResult """ if isinstance(property, Property): formula = property.raw_formula else: formula = property if model.supports_parameters: task = core.ParametricCheckTask(formula, only_initial_states) return core._parametric_model_checking_hybrid_engine(model, task, environment=environment) else: task = core.CheckTask(formula, only_initial_states) return core._model_checking_hybrid_engine(model, task, environment=environment) def transform_to_sparse_model(model): """ Transform model in symbolic representation into model in sparse representation. :param model: Symbolic model. :return: Sparse model. """ if model.supports_parameters: return core._transform_to_sparse_parametric_model(model) else: return core._transform_to_sparse_model(model) def transform_to_discrete_time_model(model, properties): """ Transform continuous-time model to discrete time model. :param model: Continuous-time model. :param properties: List of properties to transform as well. :return: Tuple (Discrete-time model, converted properties). """ formulae = [(prop.raw_formula if isinstance(prop, Property) else prop) for prop in properties] if model.supports_parameters: return core._transform_to_discrete_time_parametric_model(model, formulae) else: return core._transform_to_discrete_time_model(model, formulae) def eliminate_non_markovian_chains(ma, properties, label_behavior): """ Eliminate chains of non-Markovian states if possible. :param ma: Markov automaton. :param properties: List of properties to transform as well. :param label_behavior: Behavior of labels while elimination. :return: Tuple (converted MA, converted properties). """ formulae = [(prop.raw_formula if isinstance(prop, Property) else prop) for prop in properties] if ma.supports_parameters: return core._eliminate_non_markovian_chains_parametric(ma, formulae, label_behavior) else: return core._eliminate_non_markovian_chains(ma, formulae, label_behavior) def prob01min_states(model, eventually_formula): assert type(eventually_formula) == logic.EventuallyFormula labelform = eventually_formula.subformula labelprop = core.Property("label-prop", labelform) phiStates = BitVector(model.nr_states, True) psiStates = model_checking(model, labelprop).get_truth_values() return compute_prob01min_states(model, phiStates, psiStates) def prob01max_states(model, eventually_formula): assert type(eventually_formula) == logic.EventuallyFormula labelform = eventually_formula.subformula labelprop = core.Property("label-prop", labelform) phiStates = BitVector(model.nr_states, True) psiStates = model_checking(model, labelprop).get_truth_values() return compute_prob01min_states(model, phiStates, psiStates) def compute_prob01_states(model, phi_states, psi_states): """ Compute prob01 states for properties of the form phi_states until psi_states :param SparseDTMC model: :param BitVector phi_states: :param BitVector psi_states: Target states """ if model.model_type != ModelType.DTMC: raise StormError("Prob 01 is only defined for DTMCs -- model must be a DTMC") if model.supports_parameters: return core._compute_prob01states_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_double(model, phi_states, psi_states) def compute_prob01min_states(model, phi_states, psi_states): if model.model_type == ModelType.DTMC: return compute_prob01_states(model, phi_states, psi_states) if model.supports_parameters: return core._compute_prob01states_min_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_min_double(model, phi_states, psi_states) def compute_prob01max_states(model, phi_states, psi_states): if model.model_type == ModelType.DTMC: return compute_prob01_states(model, phi_states, psi_states) if model.supports_parameters: return core._compute_prob01states_max_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_max_double(model, phi_states, psi_states) def topological_sort(model, forward=True, initial=[]): """ :param model: :param forward: :return: """ matrix = model.transition_matrix if forward else model.backward_transition_matrix if isinstance(model, storage._SparseParametricModel): return storage._topological_sort_rf(matrix, initial) elif isinstance(model, storage._SparseModel): return storage._topological_sort_double(matrix, initial) else: raise StormError("Unknown kind of model.") def construct_submodel(model, states, actions, keep_unreachable_states=True, options=SubsystemBuilderOptions()): """ :param model: The model :param states: Which states should be preserved :param actions: Which actions should be preserved :param keep_unreachable_states: If False, run a reachability analysis. :return: A model with fewer states/actions """ if isinstance(model, storage._SparseModel): return core._construct_subsystem_double(model, states, actions, keep_unreachable_states, options) else: raise NotImplementedError() def parse_properties(properties, context=None, filters=None): """ :param properties: A string with the pctl properties :param context: A symbolic model that gives meaning to variables and constants. :param filters: filters, if applicable. :return: A list of properties """ if context is None: return core.parse_properties_without_context(properties, filters) elif type(context) == core.SymbolicModelDescription: if context.is_prism_program(): return core.parse_properties_for_prism_program(properties, context.as_prism_program(), filters) else: core.parse_properties_for_jani_program(properties, context.as_jani_model(), filters) elif type(context) == storage.PrismProgram: return core.parse_properties_for_prism_program(properties, context, filters) elif type(context) == storage.JaniModel: core.parse_properties_for_jani_model(properties, context, filters) else: raise StormError("Unclear context. Please pass a symbolic model description") def export_to_drn(model, file, options=DirectEncodingOptions()): """ Export a model to DRN format :param model: The model :param file: A path :param options: DirectEncodingOptions :return: """ if model.supports_parameters: return core._export_parametric_to_drn(model, file, options) if model.is_exact: return core._export_exact_to_drn(model, file, options) return core._export_to_drn(model, file, options)