/** @file @ingroup cudd @brief Functions for dynamic variable reordering. @author Shipra Panda, Bernard Plessier, Fabio Somenzi @copyright@parblock Copyright (c) 1995-2015, Regents of the University of Colorado All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @endparblock */ #include "util.h" #include "mtrInt.h" #include "cuddInt.h" /*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Stucture declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/ /** \cond */ /*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/ static int ddUniqueCompare (void const *ptrX, void const *ptrY); static Move * ddSwapAny (DdManager *table, int x, int y); static int ddSiftingAux (DdManager *table, int x, int xLow, int xHigh); static Move * ddSiftingUp (DdManager *table, int y, int xLow); static Move * ddSiftingDown (DdManager *table, int x, int xHigh); static int ddSiftingBackward (DdManager *table, int size, Move *moves); static int ddReorderPreprocess (DdManager *table); static int ddReorderPostprocess (DdManager *table); static int ddShuffle (DdManager *table, int *permutation); static int ddSiftUp (DdManager *table, int x, int xLow); static void bddFixTree (DdManager *table, MtrNode *treenode); static int ddUpdateMtrTree (DdManager *table, MtrNode *treenode, int *perm, int *invperm); static int ddCheckPermuation (DdManager *table, MtrNode *treenode, int *perm, int *invperm); /** \endcond */ /*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/ /** @brief Main dynamic reordering routine. @details Calls one of the possible reordering procedures: For sifting, symmetric sifting, group sifting, and window permutation it is possible to request reordering to convergence.

The core of all methods is the reordering procedure cuddSwapInPlace() which swaps two adjacent variables and is based on Rudell's paper. @return 1 in case of success; 0 otherwise. In the case of symmetric sifting (with and without convergence) returns 1 plus the number of symmetric variables, in case of success. @sideeffect Changes the variable order for all diagrams and clears the cache. */ int Cudd_ReduceHeap( DdManager * table /**< %DD manager */, Cudd_ReorderingType heuristic /**< method used for reordering */, int minsize /**< bound below which no reordering occurs */) { DdHook *hook; int result; unsigned int nextDyn; #ifdef DD_STATS unsigned int initialSize; unsigned int finalSize; #endif unsigned long localTime; /* Don't reorder if there are too many dead nodes. */ if (table->keys - table->dead < (unsigned) minsize) return(1); if (heuristic == CUDD_REORDER_SAME) { heuristic = table->autoMethod; } if (heuristic == CUDD_REORDER_NONE) { return(1); } /* This call to Cudd_ReduceHeap does initiate reordering. Therefore ** we count it. */ table->reorderings++; localTime = util_cpu_time(); /* Run the hook functions. */ hook = table->preReorderingHook; while (hook != NULL) { int res = (hook->f)(table, "BDD", (void *)heuristic); if (res == 0) return(0); hook = hook->next; } if (!ddReorderPreprocess(table)) return(0); table->ddTotalNumberSwapping = 0; if (table->keys > table->peakLiveNodes) { table->peakLiveNodes = table->keys; } #ifdef DD_STATS initialSize = (int) (table->keys - table->isolated); table->totalNISwaps = 0; switch(heuristic) { case CUDD_REORDER_RANDOM: case CUDD_REORDER_RANDOM_PIVOT: (void) fprintf(table->out,"#:I_RANDOM "); break; case CUDD_REORDER_SIFT: case CUDD_REORDER_SIFT_CONVERGE: case CUDD_REORDER_SYMM_SIFT: case CUDD_REORDER_SYMM_SIFT_CONV: case CUDD_REORDER_GROUP_SIFT: case CUDD_REORDER_GROUP_SIFT_CONV: (void) fprintf(table->out,"#:I_SIFTING "); break; case CUDD_REORDER_WINDOW2: case CUDD_REORDER_WINDOW3: case CUDD_REORDER_WINDOW4: case CUDD_REORDER_WINDOW2_CONV: case CUDD_REORDER_WINDOW3_CONV: case CUDD_REORDER_WINDOW4_CONV: (void) fprintf(table->out,"#:I_WINDOW "); break; case CUDD_REORDER_ANNEALING: (void) fprintf(table->out,"#:I_ANNEAL "); break; case CUDD_REORDER_GENETIC: (void) fprintf(table->out,"#:I_GENETIC "); break; case CUDD_REORDER_LINEAR: case CUDD_REORDER_LINEAR_CONVERGE: (void) fprintf(table->out,"#:I_LINSIFT "); break; case CUDD_REORDER_EXACT: (void) fprintf(table->out,"#:I_EXACT "); break; default: return(0); } (void) fprintf(table->out,"%8d: initial size",initialSize); #endif /* See if we should use alternate threshold for maximum growth. */ if (table->reordCycle && table->reorderings % table->reordCycle == 0) { double saveGrowth = table->maxGrowth; table->maxGrowth = table->maxGrowthAlt; result = cuddTreeSifting(table,heuristic); table->maxGrowth = saveGrowth; } else { result = cuddTreeSifting(table,heuristic); } #ifdef DD_STATS (void) fprintf(table->out,"\n"); finalSize = (int) (table->keys - table->isolated); (void) fprintf(table->out,"#:F_REORDER %8d: final size\n",finalSize); (void) fprintf(table->out,"#:T_REORDER %8g: total time (sec)\n", ((double)(util_cpu_time() - localTime)/1000.0)); (void) fprintf(table->out,"#:N_REORDER %8d: total swaps\n", table->ddTotalNumberSwapping); (void) fprintf(table->out,"#:M_REORDER %8d: NI swaps\n", table->totalNISwaps); #endif if (result == 0) return(0); if (!ddReorderPostprocess(table)) return(0); if (table->realign) { if (!cuddZddAlignToBdd(table)) return(0); } nextDyn = (table->keys - table->constants.keys + 1) * DD_DYN_RATIO + table->constants.keys; if (table->reorderings < 20 || nextDyn > table->nextDyn) table->nextDyn = nextDyn; else table->nextDyn += 20; if (table->randomizeOrder != 0) { table->nextDyn += Cudd_Random(table) & table->randomizeOrder; } table->reordered = 1; /* Run hook functions. */ hook = table->postReorderingHook; while (hook != NULL) { int res = (hook->f)(table, "BDD", (void *)(ptruint)localTime); if (res == 0) return(0); hook = hook->next; } /* Update cumulative reordering time. */ table->reordTime += util_cpu_time() - localTime; return(result); } /* end of Cudd_ReduceHeap */ /** @brief Reorders variables according to given permutation. @details The i-th entry of the permutation array contains the index of the variable that should be brought to the i-th level. The size of the array should be equal or greater to the number of variables currently in use. @return 1 in case of success; 0 otherwise. @sideeffect Changes the variable order for all diagrams and clears the cache. @see Cudd_ReduceHeap */ int Cudd_ShuffleHeap( DdManager * table /**< %DD manager */, int * permutation /**< required variable permutation */) { int result; int i; int identity = 1; int *perm; /* Don't waste time in case of identity permutation. */ for (i = 0; i < table->size; i++) { if (permutation[i] != table->invperm[i]) { identity = 0; break; } } if (identity == 1) { return(1); } if (!ddReorderPreprocess(table)) return(0); if (table->keys > table->peakLiveNodes) { table->peakLiveNodes = table->keys; } perm = ALLOC(int, table->size); for (i = 0; i < table->size; i++) perm[permutation[i]] = i; if (!ddCheckPermuation(table,table->tree,perm,permutation)) { FREE(perm); return(0); } if (!ddUpdateMtrTree(table,table->tree,perm,permutation)) { FREE(perm); return(0); } FREE(perm); result = ddShuffle(table,permutation); if (!ddReorderPostprocess(table)) return(0); return(result); } /* end of Cudd_ShuffleHeap */ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /** @brief Dynamically allocates a Node. @details This procedure is similar to cuddAllocNode in Cudd_Table.c, but it does not attempt garbage collection, because during reordering there are no dead nodes. @return a pointer to a new node if successful; NULL is memory is full. @sideeffect None @see cuddAllocNode */ DdNode * cuddDynamicAllocNode( DdManager * table) { int i; DdNodePtr *mem; DdNode *list, *node; extern DD_OOMFP MMoutOfMemory; DD_OOMFP saveHandler; if (table->nextFree == NULL) { /* free list is empty */ /* Try to allocate a new block. */ saveHandler = MMoutOfMemory; MMoutOfMemory = table->outOfMemCallback; mem = (DdNodePtr *) ALLOC(DdNode, DD_MEM_CHUNK + 1); MMoutOfMemory = saveHandler; if (mem == NULL && table->stash != NULL) { FREE(table->stash); table->stash = NULL; /* Inhibit resizing of tables. */ table->maxCacheHard = table->cacheSlots - 1; table->cacheSlack = - (int) (table->cacheSlots + 1); for (i = 0; i < table->size; i++) { table->subtables[i].maxKeys <<= 2; } mem = (DdNodePtr *) ALLOC(DdNode,DD_MEM_CHUNK + 1); } if (mem == NULL) { /* Out of luck. Call the default handler to do ** whatever it specifies for a failed malloc. If this ** handler returns, then set error code, print ** warning, and return. */ (*MMoutOfMemory)(sizeof(DdNode)*(DD_MEM_CHUNK + 1)); table->errorCode = CUDD_MEMORY_OUT; #ifdef DD_VERBOSE (void) fprintf(table->err, "cuddDynamicAllocNode: out of memory"); (void) fprintf(table->err,"Memory in use = %lu\n", table->memused); #endif return(NULL); } else { /* successful allocation; slice memory */ size_t offset; table->memused += (DD_MEM_CHUNK + 1) * sizeof(DdNode); mem[0] = (DdNode *) table->memoryList; table->memoryList = mem; /* Here we rely on the fact that the size of a DdNode is a ** power of 2 and a multiple of the size of a pointer. ** If we align one node, all the others will be aligned ** as well. */ offset = (size_t) mem & (sizeof(DdNode) - 1); mem += (sizeof(DdNode) - offset) / sizeof(DdNodePtr); #ifdef DD_DEBUG assert(((size_t) mem & (sizeof(DdNode) - 1)) == 0); #endif list = (DdNode *) mem; i = 1; do { list[i - 1].ref = 0; list[i - 1].next = &list[i]; } while (++i < DD_MEM_CHUNK); list[DD_MEM_CHUNK-1].ref = 0; list[DD_MEM_CHUNK - 1].next = NULL; table->nextFree = &list[0]; } } /* if free list empty */ node = table->nextFree; table->nextFree = node->next; return (node); } /* end of cuddDynamicAllocNode */ /** @brief Implementation of Rudell's sifting algorithm. @details Assumes that no dead nodes are present.

  1. Order all the variables according to the number of entries in each unique table.
  2. Sift the variable up and down, remembering each time the total size of the %DD heap.
  3. Select the best permutation.
  4. Repeat 3 and 4 for all variables.
@return 1 if successful; 0 otherwise. @sideeffect None */ int cuddSifting( DdManager * table, int lower, int upper) { int i; IndexKey *var; int size; int x; int result; #ifdef DD_STATS int previousSize; #endif size = table->size; /* Find order in which to sift variables. */ var = ALLOC(IndexKey,size); if (var == NULL) { table->errorCode = CUDD_MEMORY_OUT; goto cuddSiftingOutOfMem; } for (i = 0; i < size; i++) { x = table->perm[i]; var[i].index = i; var[i].keys = table->subtables[x].keys; } util_qsort(var,size,sizeof(IndexKey),ddUniqueCompare); /* Now sift. */ for (i = 0; i < ddMin(table->siftMaxVar,size); i++) { if (table->ddTotalNumberSwapping >= table->siftMaxSwap) break; if (util_cpu_time() - table->startTime + table->reordTime > table->timeLimit) { table->autoDyn = 0; /* prevent further reordering */ break; } if (table->terminationCallback != NULL && table->terminationCallback(table->tcbArg)) { table->autoDyn = 0; /* prevent further reordering */ break; } x = table->perm[var[i].index]; if (x < lower || x > upper || table->subtables[x].bindVar == 1) continue; #ifdef DD_STATS previousSize = (int) (table->keys - table->isolated); #endif result = ddSiftingAux(table, x, lower, upper); if (!result) goto cuddSiftingOutOfMem; #ifdef DD_STATS if (table->keys < (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"-"); } else if (table->keys > (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"+"); /* should never happen */ (void) fprintf(table->err,"\nSize increased from %d to %u while sifting variable %d\n", previousSize, table->keys - table->isolated, var[i].index); } else { (void) fprintf(table->out,"="); } fflush(table->out); #endif } FREE(var); return(1); cuddSiftingOutOfMem: if (var != NULL) FREE(var); return(0); } /* end of cuddSifting */ /** @brief Reorders variables by a sequence of (non-adjacent) swaps. @details Implementation of Plessier's algorithm that reorders variables by a sequence of (non-adjacent) swaps.
  1. Select two variables (RANDOM or HEURISTIC).
  2. Permute these variables.
  3. If the nodes have decreased accept the permutation.
  4. Otherwise reconstruct the original heap.
  5. Loop.
@return 1 in case of success; 0 otherwise. @sideeffect None */ int cuddSwapping( DdManager * table, int lower, int upper, Cudd_ReorderingType heuristic) { int i, j; int max, keys; int nvars; int x, y; int iterate; int previousSize; Move *moves, *move; int pivot = 0; int modulo; int result; #ifdef DD_DEBUG /* Sanity check */ assert(lower >= 0 && upper < table->size && lower <= upper); #endif nvars = upper - lower + 1; iterate = nvars; for (i = 0; i < iterate; i++) { if (table->ddTotalNumberSwapping >= table->siftMaxSwap) break; if (heuristic == CUDD_REORDER_RANDOM_PIVOT) { max = -1; for (j = lower; j <= upper; j++) { if ((keys = table->subtables[j].keys) > max) { max = keys; pivot = j; } } modulo = upper - pivot; if (modulo == 0) { y = pivot; } else{ y = pivot + 1 + ((int) Cudd_Random(table) % modulo); } modulo = pivot - lower - 1; if (modulo < 1) { x = lower; } else{ do { x = (int) Cudd_Random(table) % modulo; } while (x == y); } } else { x = ((int) Cudd_Random(table) % nvars) + lower; do { y = ((int) Cudd_Random(table) % nvars) + lower; } while (x == y); } previousSize = (int) (table->keys - table->isolated); moves = ddSwapAny(table,x,y); if (moves == NULL) goto cuddSwappingOutOfMem; result = ddSiftingBackward(table,previousSize,moves); if (!result) goto cuddSwappingOutOfMem; while (moves != NULL) { move = moves->next; cuddDeallocMove(table, moves); moves = move; } #ifdef DD_STATS if (table->keys < (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"-"); } else if (table->keys > (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"+"); /* should never happen */ } else { (void) fprintf(table->out,"="); } fflush(table->out); #endif #if 0 (void) fprintf(table->out,"#:t_SWAPPING %8d: tmp size\n", table->keys - table->isolated); #endif } return(1); cuddSwappingOutOfMem: while (moves != NULL) { move = moves->next; cuddDeallocMove(table, moves); moves = move; } return(0); } /* end of cuddSwapping */ /** @brief Finds the next subtable with a larger index. @return the index. @sideeffect None @see cuddNextLow */ int cuddNextHigh( DdManager * table, int x) { (void) table; /* avoid warning */ return(x+1); } /* end of cuddNextHigh */ /** @brief Finds the next subtable with a smaller index. @return the index. @sideeffect None @see cuddNextHigh */ int cuddNextLow( DdManager * table, int x) { (void) table; /* avoid warning */ return(x-1); } /* end of cuddNextLow */ /** @brief Swaps two adjacent variables. @details It assumes that no dead nodes are present on entry to this procedure. The procedure then guarantees that no dead nodes will be present when it terminates. cuddSwapInPlace assumes that x < y. @return the number of keys in the table if successful; 0 otherwise. @sideeffect None */ int cuddSwapInPlace( DdManager * table, int x, int y) { DdNodePtr *xlist, *ylist; int xindex, yindex; int xslots, yslots; int xshift, yshift; int oldxkeys, oldykeys; int newxkeys, newykeys; int comple, newcomplement; int i; Cudd_VariableType varType; Cudd_LazyGroupType groupType; int posn; int isolated; DdNode *f,*f0,*f1,*f01,*f00,*f11,*f10,*newf1,*newf0; DdNode *g,*next; DdNodePtr *previousP; DdNode *tmp; DdNode *sentinel = &(table->sentinel); extern DD_OOMFP MMoutOfMemory; DD_OOMFP saveHandler; #ifdef DD_DEBUG int count,idcheck; #endif #ifdef DD_DEBUG assert(x < y); assert(cuddNextHigh(table,x) == y); assert(table->subtables[x].keys != 0); assert(table->subtables[y].keys != 0); assert(table->subtables[x].dead == 0); assert(table->subtables[y].dead == 0); #endif table->ddTotalNumberSwapping++; /* Get parameters of x subtable. */ xindex = table->invperm[x]; xlist = table->subtables[x].nodelist; oldxkeys = table->subtables[x].keys; xslots = table->subtables[x].slots; xshift = table->subtables[x].shift; /* Get parameters of y subtable. */ yindex = table->invperm[y]; ylist = table->subtables[y].nodelist; oldykeys = table->subtables[y].keys; yslots = table->subtables[y].slots; yshift = table->subtables[y].shift; if (!cuddTestInteract(table,xindex,yindex)) { #ifdef DD_STATS table->totalNISwaps++; #endif newxkeys = oldxkeys; newykeys = oldykeys; } else { newxkeys = 0; newykeys = oldykeys; /* Check whether the two projection functions involved in this ** swap are isolated. At the end, we'll be able to tell how many ** isolated projection functions are there by checking only these ** two functions again. This is done to eliminate the isolated ** projection functions from the node count. */ isolated = - ((table->vars[xindex]->ref == 1) + (table->vars[yindex]->ref == 1)); /* The nodes in the x layer that do not depend on ** y will stay there; the others are put in a chain. ** The chain is handled as a LIFO; g points to the beginning. */ g = NULL; if ((oldxkeys >= xslots || (unsigned) xslots == table->initSlots) && oldxkeys <= DD_MAX_SUBTABLE_DENSITY * xslots) { for (i = 0; i < xslots; i++) { previousP = &(xlist[i]); f = *previousP; while (f != sentinel) { next = f->next; f1 = cuddT(f); f0 = cuddE(f); if (f1->index != (DdHalfWord) yindex && Cudd_Regular(f0)->index != (DdHalfWord) yindex) { /* stays */ newxkeys++; *previousP = f; previousP = &(f->next); } else { f->index = yindex; f->next = g; g = f; } f = next; } /* while there are elements in the collision chain */ *previousP = sentinel; } /* for each slot of the x subtable */ } else { /* resize xlist */ DdNode *h = NULL; DdNodePtr *newxlist; unsigned int newxslots; int newxshift; /* Empty current xlist. Nodes that stay go to list h; ** nodes that move go to list g. */ for (i = 0; i < xslots; i++) { f = xlist[i]; while (f != sentinel) { next = f->next; f1 = cuddT(f); f0 = cuddE(f); if (f1->index != (DdHalfWord) yindex && Cudd_Regular(f0)->index != (DdHalfWord) yindex) { /* stays */ f->next = h; h = f; newxkeys++; } else { f->index = yindex; f->next = g; g = f; } f = next; } /* while there are elements in the collision chain */ } /* for each slot of the x subtable */ /* Decide size of new subtable. */ newxshift = xshift; newxslots = xslots; while ((unsigned) oldxkeys > DD_MAX_SUBTABLE_DENSITY * newxslots) { newxshift--; newxslots <<= 1; } while ((unsigned) oldxkeys < newxslots && newxslots > table->initSlots) { newxshift++; newxslots >>= 1; } /* Try to allocate new table. Be ready to back off. */ saveHandler = MMoutOfMemory; MMoutOfMemory = table->outOfMemCallback; newxlist = ALLOC(DdNodePtr, newxslots); MMoutOfMemory = saveHandler; if (newxlist == NULL) { (void) fprintf(table->err, "Unable to resize subtable %d for lack of memory\n", i); } else { table->slots += ((int) newxslots - xslots); table->minDead = (unsigned) (table->gcFrac * (double) table->slots); table->cacheSlack = (int) ddMin(table->maxCacheHard, DD_MAX_CACHE_TO_SLOTS_RATIO * table->slots) - 2 * (int) table->cacheSlots; table->memused += ((int) newxslots - xslots) * sizeof(DdNodePtr); FREE(xlist); xslots = newxslots; xshift = newxshift; xlist = newxlist; } /* Initialize new subtable. */ for (i = 0; i < xslots; i++) { xlist[i] = sentinel; } /* Move nodes that were parked in list h to their new home. */ f = h; while (f != NULL) { next = f->next; f1 = cuddT(f); f0 = cuddE(f); /* Check xlist for pair (f11,f01). */ posn = ddHash(f1, f0, xshift); /* For each element tmp in collision list xlist[posn]. */ previousP = &(xlist[posn]); tmp = *previousP; while (f1 < cuddT(tmp)) { previousP = &(tmp->next); tmp = *previousP; } while (f1 == cuddT(tmp) && f0 < cuddE(tmp)) { previousP = &(tmp->next); tmp = *previousP; } f->next = *previousP; *previousP = f; f = next; } } #ifdef DD_COUNT table->swapSteps += oldxkeys - newxkeys; #endif /* Take care of the x nodes that must be re-expressed. ** They form a linked list pointed by g. Their index has been ** already changed to yindex. */ f = g; while (f != NULL) { next = f->next; /* Find f1, f0, f11, f10, f01, f00. */ f1 = cuddT(f); #ifdef DD_DEBUG assert(!(Cudd_IsComplement(f1))); #endif if ((int) f1->index == yindex) { f11 = cuddT(f1); f10 = cuddE(f1); } else { f11 = f10 = f1; } #ifdef DD_DEBUG assert(!(Cudd_IsComplement(f11))); #endif f0 = cuddE(f); comple = Cudd_IsComplement(f0); f0 = Cudd_Regular(f0); if ((int) f0->index == yindex) { f01 = cuddT(f0); f00 = cuddE(f0); } else { f01 = f00 = f0; } if (comple) { f01 = Cudd_Not(f01); f00 = Cudd_Not(f00); } /* Decrease ref count of f1. */ cuddSatDec(f1->ref); /* Create the new T child. */ if (f11 == f01) { newf1 = f11; cuddSatInc(newf1->ref); } else { /* Check xlist for triple (xindex,f11,f01). */ posn = ddHash(f11, f01, xshift); /* For each element newf1 in collision list xlist[posn]. */ previousP = &(xlist[posn]); newf1 = *previousP; while (f11 < cuddT(newf1)) { previousP = &(newf1->next); newf1 = *previousP; } while (f11 == cuddT(newf1) && f01 < cuddE(newf1)) { previousP = &(newf1->next); newf1 = *previousP; } if (cuddT(newf1) == f11 && cuddE(newf1) == f01) { cuddSatInc(newf1->ref); } else { /* no match */ newf1 = cuddDynamicAllocNode(table); if (newf1 == NULL) goto cuddSwapOutOfMem; newf1->index = xindex; newf1->ref = 1; cuddT(newf1) = f11; cuddE(newf1) = f01; /* Insert newf1 in the collision list xlist[posn]; ** increase the ref counts of f11 and f01. */ newxkeys++; newf1->next = *previousP; *previousP = newf1; cuddSatInc(f11->ref); tmp = Cudd_Regular(f01); cuddSatInc(tmp->ref); } } cuddT(f) = newf1; #ifdef DD_DEBUG assert(!(Cudd_IsComplement(newf1))); #endif /* Do the same for f0, keeping complement dots into account. */ /* Decrease ref count of f0. */ tmp = Cudd_Regular(f0); cuddSatDec(tmp->ref); /* Create the new E child. */ if (f10 == f00) { newf0 = f00; tmp = Cudd_Regular(newf0); cuddSatInc(tmp->ref); } else { /* make sure f10 is regular */ newcomplement = Cudd_IsComplement(f10); if (newcomplement) { f10 = Cudd_Not(f10); f00 = Cudd_Not(f00); } /* Check xlist for triple (xindex,f10,f00). */ posn = ddHash(f10, f00, xshift); /* For each element newf0 in collision list xlist[posn]. */ previousP = &(xlist[posn]); newf0 = *previousP; while (f10 < cuddT(newf0)) { previousP = &(newf0->next); newf0 = *previousP; } while (f10 == cuddT(newf0) && f00 < cuddE(newf0)) { previousP = &(newf0->next); newf0 = *previousP; } if (cuddT(newf0) == f10 && cuddE(newf0) == f00) { cuddSatInc(newf0->ref); } else { /* no match */ newf0 = cuddDynamicAllocNode(table); if (newf0 == NULL) goto cuddSwapOutOfMem; newf0->index = xindex; newf0->ref = 1; cuddT(newf0) = f10; cuddE(newf0) = f00; /* Insert newf0 in the collision list xlist[posn]; ** increase the ref counts of f10 and f00. */ newxkeys++; newf0->next = *previousP; *previousP = newf0; cuddSatInc(f10->ref); tmp = Cudd_Regular(f00); cuddSatInc(tmp->ref); } if (newcomplement) { newf0 = Cudd_Not(newf0); } } cuddE(f) = newf0; /* Insert the modified f in ylist. ** The modified f does not already exists in ylist. ** (Because of the uniqueness of the cofactors.) */ posn = ddHash(newf1, newf0, yshift); newykeys++; previousP = &(ylist[posn]); tmp = *previousP; while (newf1 < cuddT(tmp)) { previousP = &(tmp->next); tmp = *previousP; } while (newf1 == cuddT(tmp) && newf0 < cuddE(tmp)) { previousP = &(tmp->next); tmp = *previousP; } f->next = *previousP; *previousP = f; f = next; } /* while f != NULL */ /* GC the y layer. */ /* For each node f in ylist. */ for (i = 0; i < yslots; i++) { previousP = &(ylist[i]); f = *previousP; while (f != sentinel) { next = f->next; if (f->ref == 0) { tmp = cuddT(f); cuddSatDec(tmp->ref); tmp = Cudd_Regular(cuddE(f)); cuddSatDec(tmp->ref); cuddDeallocNode(table,f); newykeys--; } else { *previousP = f; previousP = &(f->next); } f = next; } /* while f */ *previousP = sentinel; } /* for i */ #ifdef DD_DEBUG #if 0 (void) fprintf(table->out,"Swapping %d and %d\n",x,y); #endif count = 0; idcheck = 0; for (i = 0; i < yslots; i++) { f = ylist[i]; while (f != sentinel) { count++; if (f->index != (DdHalfWord) yindex) idcheck++; f = f->next; } } if (count != newykeys) { (void) fprintf(table->out, "Error in finding newykeys\toldykeys = %d\tnewykeys = %d\tactual = %d\n", oldykeys,newykeys,count); } if (idcheck != 0) (void) fprintf(table->out, "Error in id's of ylist\twrong id's = %d\n", idcheck); count = 0; idcheck = 0; for (i = 0; i < xslots; i++) { f = xlist[i]; while (f != sentinel) { count++; if (f->index != (DdHalfWord) xindex) idcheck++; f = f->next; } } if (count != newxkeys) { (void) fprintf(table->out, "Error in finding newxkeys\toldxkeys = %d \tnewxkeys = %d \tactual = %d\n", oldxkeys,newxkeys,count); } if (idcheck != 0) (void) fprintf(table->out, "Error in id's of xlist\twrong id's = %d\n", idcheck); #endif isolated += (table->vars[xindex]->ref == 1) + (table->vars[yindex]->ref == 1); table->isolated += (unsigned int) isolated; } /* Set the appropriate fields in table. */ table->subtables[x].nodelist = ylist; table->subtables[x].slots = yslots; table->subtables[x].shift = yshift; table->subtables[x].keys = newykeys; table->subtables[x].maxKeys = yslots * DD_MAX_SUBTABLE_DENSITY; i = table->subtables[x].bindVar; table->subtables[x].bindVar = table->subtables[y].bindVar; table->subtables[y].bindVar = i; /* Adjust fields for lazy sifting. */ varType = table->subtables[x].varType; table->subtables[x].varType = table->subtables[y].varType; table->subtables[y].varType = varType; i = table->subtables[x].pairIndex; table->subtables[x].pairIndex = table->subtables[y].pairIndex; table->subtables[y].pairIndex = i; i = table->subtables[x].varHandled; table->subtables[x].varHandled = table->subtables[y].varHandled; table->subtables[y].varHandled = i; groupType = table->subtables[x].varToBeGrouped; table->subtables[x].varToBeGrouped = table->subtables[y].varToBeGrouped; table->subtables[y].varToBeGrouped = groupType; table->subtables[y].nodelist = xlist; table->subtables[y].slots = xslots; table->subtables[y].shift = xshift; table->subtables[y].keys = newxkeys; table->subtables[y].maxKeys = xslots * DD_MAX_SUBTABLE_DENSITY; table->perm[xindex] = y; table->perm[yindex] = x; table->invperm[x] = yindex; table->invperm[y] = xindex; table->keys += newxkeys + newykeys - oldxkeys - oldykeys; return((int)(table->keys - table->isolated)); cuddSwapOutOfMem: (void) fprintf(table->err,"Error: cuddSwapInPlace out of memory\n"); return (0); } /* end of cuddSwapInPlace */ /** @brief Reorders %BDD variables according to the order of the %ZDD variables. @details This function can be called at the end of %ZDD reordering to insure that the order of the %BDD variables is consistent with the order of the %ZDD variables. The number of %ZDD variables must be a multiple of the number of %BDD variables. Let M be the ratio of the two numbers. cuddBddAlignToZdd then considers the %ZDD variables from M*i to (M+1)*i-1 as corresponding to %BDD variable i. This function should be normally called from Cudd_zddReduceHeap, which clears the cache. @return 1 in case of success; 0 otherwise. @sideeffect Changes the %BDD variable order for all diagrams and performs garbage collection of the %BDD unique table. @see Cudd_ShuffleHeap Cudd_zddReduceHeap */ int cuddBddAlignToZdd( DdManager * table /**< %DD manager */) { int *invperm; /* permutation array */ int M; /* ratio of ZDD variables to BDD variables */ int i; /* loop index */ int result; /* return value */ /* We assume that a ratio of 0 is OK. */ if (table->size == 0) return(1); M = table->sizeZ / table->size; /* Check whether the number of ZDD variables is a multiple of the ** number of BDD variables. */ if (M * table->size != table->sizeZ) return(0); /* Create and initialize the inverse permutation array. */ invperm = ALLOC(int,table->size); if (invperm == NULL) { table->errorCode = CUDD_MEMORY_OUT; return(0); } for (i = 0; i < table->sizeZ; i += M) { int indexZ = table->invpermZ[i]; int index = indexZ / M; invperm[i / M] = index; } /* Eliminate dead nodes. Do not scan the cache again, because we ** assume that Cudd_zddReduceHeap has already cleared it. */ cuddGarbageCollect(table,0); /* Initialize number of isolated projection functions. */ table->isolated = 0; for (i = 0; i < table->size; i++) { if (table->vars[i]->ref == 1) table->isolated++; } /* Initialize the interaction matrix. */ result = cuddInitInteract(table); if (result == 0) return(0); result = ddShuffle(table, invperm); FREE(invperm); /* Free interaction matrix. */ FREE(table->interact); /* Fix the BDD variable group tree. */ bddFixTree(table,table->tree); return(result); } /* end of cuddBddAlignToZdd */ /*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/ /** @brief Comparison function used by qsort. @details Used to order the variables according to the number of keys in the subtables. @return the difference in number of keys between the two variables being compared. @sideeffect None */ static int ddUniqueCompare( void const * ptrX, void const * ptrY) { IndexKey const * pX = (IndexKey const *) ptrX; IndexKey const * pY = (IndexKey const *) ptrY; #if 0 /* This would make the order stable, which would be good because of * it would platform-independent, but instability often produces * smaller BDDs. */ if (pY->keys == pX->keys) { return(pX->index - pY->index); } #endif return(pY->keys - pX->keys); } /* end of ddUniqueCompare */ /** @brief Swaps any two variables. @return the set of moves. @sideeffect None */ static Move * ddSwapAny( DdManager * table, int x, int y) { Move *move, *moves; int xRef,yRef; int xNext,yNext; int size; int limitSize; int tmp; if (x >y) { tmp = x; x = y; y = tmp; } xRef = x; yRef = y; xNext = cuddNextHigh(table,x); yNext = cuddNextLow(table,y); moves = NULL; limitSize = (int) (table->keys - table->isolated); for (;;) { if ( xNext == yNext) { size = cuddSwapInPlace(table,x,xNext); if (size == 0) goto ddSwapAnyOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSwapAnyOutOfMem; move->x = x; move->y = xNext; move->size = size; move->next = moves; moves = move; size = cuddSwapInPlace(table,yNext,y); if (size == 0) goto ddSwapAnyOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSwapAnyOutOfMem; move->x = yNext; move->y = y; move->size = size; move->next = moves; moves = move; size = cuddSwapInPlace(table,x,xNext); if (size == 0) goto ddSwapAnyOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSwapAnyOutOfMem; move->x = x; move->y = xNext; move->size = size; move->next = moves; moves = move; tmp = x; x = y; y = tmp; } else if (x == yNext) { size = cuddSwapInPlace(table,x,xNext); if (size == 0) goto ddSwapAnyOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSwapAnyOutOfMem; move->x = x; move->y = xNext; move->size = size; move->next = moves; moves = move; tmp = x; x = y; y = tmp; } else { size = cuddSwapInPlace(table,x,xNext); if (size == 0) goto ddSwapAnyOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSwapAnyOutOfMem; move->x = x; move->y = xNext; move->size = size; move->next = moves; moves = move; size = cuddSwapInPlace(table,yNext,y); if (size == 0) goto ddSwapAnyOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSwapAnyOutOfMem; move->x = yNext; move->y = y; move->size = size; move->next = moves; moves = move; x = xNext; y = yNext; } xNext = cuddNextHigh(table,x); yNext = cuddNextLow(table,y); if (xNext > yRef) break; if ((double) size > table->maxGrowth * (double) limitSize) break; if (size < limitSize) limitSize = size; } if (yNext>=xRef) { size = cuddSwapInPlace(table,yNext,y); if (size == 0) goto ddSwapAnyOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSwapAnyOutOfMem; move->x = yNext; move->y = y; move->size = size; move->next = moves; moves = move; } return(moves); ddSwapAnyOutOfMem: while (moves != NULL) { move = moves->next; cuddDeallocMove(table, moves); moves = move; } return(NULL); } /* end of ddSwapAny */ /** @brief Given xLow <= x <= xHigh moves x up and down between the boundaries. @details Finds the best position and does the required changes. @return 1 if successful; 0 otherwise. @sideeffect None */ static int ddSiftingAux( DdManager * table, int x, int xLow, int xHigh) { Move *move; Move *moveUp; /* list of up moves */ Move *moveDown; /* list of down moves */ int initialSize; int result; initialSize = (int) (table->keys - table->isolated); moveDown = NULL; moveUp = NULL; if (x == xLow) { moveDown = ddSiftingDown(table,x,xHigh); /* At this point x --> xHigh unless bounding occurred. */ if (moveDown == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem; /* Move backward and stop at best position. */ result = ddSiftingBackward(table,initialSize,moveDown); if (!result) goto ddSiftingAuxOutOfMem; } else if (x == xHigh) { moveUp = ddSiftingUp(table,x,xLow); /* At this point x --> xLow unless bounding occurred. */ if (moveUp == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem; /* Move backward and stop at best position. */ result = ddSiftingBackward(table,initialSize,moveUp); if (!result) goto ddSiftingAuxOutOfMem; } else if ((x - xLow) > (xHigh - x)) { /* must go down first: shorter */ moveDown = ddSiftingDown(table,x,xHigh); /* At this point x --> xHigh unless bounding occurred. */ if (moveDown == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem; if (moveDown != NULL) { x = moveDown->y; } moveUp = ddSiftingUp(table,x,xLow); if (moveUp == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem; /* Move backward and stop at best position */ result = ddSiftingBackward(table,initialSize,moveUp); if (!result) goto ddSiftingAuxOutOfMem; } else { /* must go up first: shorter */ moveUp = ddSiftingUp(table,x,xLow); /* At this point x --> xLow unless bounding occurred. */ if (moveUp == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem; if (moveUp != NULL) { x = moveUp->x; } moveDown = ddSiftingDown(table,x,xHigh); if (moveDown == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem; /* Move backward and stop at best position. */ result = ddSiftingBackward(table,initialSize,moveDown); if (!result) goto ddSiftingAuxOutOfMem; } while (moveDown != NULL) { move = moveDown->next; cuddDeallocMove(table, moveDown); moveDown = move; } while (moveUp != NULL) { move = moveUp->next; cuddDeallocMove(table, moveUp); moveUp = move; } return(1); ddSiftingAuxOutOfMem: if (moveDown != (Move *) CUDD_OUT_OF_MEM) { while (moveDown != NULL) { move = moveDown->next; cuddDeallocMove(table, moveDown); moveDown = move; } } if (moveUp != (Move *) CUDD_OUT_OF_MEM) { while (moveUp != NULL) { move = moveUp->next; cuddDeallocMove(table, moveUp); moveUp = move; } } return(0); } /* end of ddSiftingAux */ /** @brief Sifts a variable up. @details Moves y up until either it reaches the bound (xLow) or the size of the %DD heap increases too much. @return the set of moves in case of success; NULL if memory is full. @sideeffect None */ static Move * ddSiftingUp( DdManager * table, int y, int xLow) { Move *moves; Move *move; int x; int size; int limitSize; int xindex, yindex; int isolated; int L; /* lower bound on DD size */ #ifdef DD_DEBUG int checkL; int z; int zindex; #endif moves = NULL; yindex = table->invperm[y]; /* Initialize the lower bound. ** The part of the DD below y will not change. ** The part of the DD above y that does not interact with y will not ** change. The rest may vanish in the best case, except for ** the nodes at level xLow, which will not vanish, regardless. */ limitSize = L = (int) (table->keys - table->isolated); for (x = xLow + 1; x < y; x++) { xindex = table->invperm[x]; if (cuddTestInteract(table,xindex,yindex)) { isolated = table->vars[xindex]->ref == 1; L -= table->subtables[x].keys - isolated; } } isolated = table->vars[yindex]->ref == 1; L -= (int) table->subtables[y].keys - isolated; x = cuddNextLow(table,y); while (x >= xLow && L <= limitSize) { xindex = table->invperm[x]; #ifdef DD_DEBUG checkL = (int) (table->keys - table->isolated); for (z = xLow + 1; z < y; z++) { zindex = table->invperm[z]; if (cuddTestInteract(table,zindex,yindex)) { isolated = table->vars[zindex]->ref == 1; checkL -= (int) table->subtables[z].keys - isolated; } } isolated = table->vars[yindex]->ref == 1; checkL -= (int) table->subtables[y].keys - isolated; assert(L == checkL); #endif size = cuddSwapInPlace(table,x,y); if (size == 0) goto ddSiftingUpOutOfMem; /* Update the lower bound. */ if (cuddTestInteract(table,xindex,yindex)) { isolated = table->vars[xindex]->ref == 1; L += (int) table->subtables[y].keys - isolated; } move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSiftingUpOutOfMem; move->x = x; move->y = y; move->size = size; move->next = moves; moves = move; if ((double) size > (double) limitSize * table->maxGrowth) break; if (size < limitSize) limitSize = size; y = x; x = cuddNextLow(table,y); } return(moves); ddSiftingUpOutOfMem: while (moves != NULL) { move = moves->next; cuddDeallocMove(table, moves); moves = move; } return((Move *) CUDD_OUT_OF_MEM); } /* end of ddSiftingUp */ /** @brief Sifts a variable down. @details Moves x down until either it reaches the bound (xHigh) or the size of the %DD heap increases too much. @return the set of moves in case of success; NULL if memory is full. @sideeffect None */ static Move * ddSiftingDown( DdManager * table, int x, int xHigh) { Move *moves; Move *move; int y; int size; int R; /* upper bound on node decrease */ int limitSize; int xindex, yindex; int isolated; #ifdef DD_DEBUG int checkR; int z; int zindex; #endif moves = NULL; /* Initialize R */ xindex = table->invperm[x]; limitSize = size = (int) (table->keys - table->isolated); R = 0; for (y = xHigh; y > x; y--) { yindex = table->invperm[y]; if (cuddTestInteract(table,xindex,yindex)) { isolated = table->vars[yindex]->ref == 1; R += (int) table->subtables[y].keys - isolated; } } y = cuddNextHigh(table,x); while (y <= xHigh && size - R < limitSize) { #ifdef DD_DEBUG checkR = 0; for (z = xHigh; z > x; z--) { zindex = table->invperm[z]; if (cuddTestInteract(table,xindex,zindex)) { isolated = table->vars[zindex]->ref == 1; checkR += (int) table->subtables[z].keys - isolated; } } assert(R == checkR); #endif /* Update upper bound on node decrease. */ yindex = table->invperm[y]; if (cuddTestInteract(table,xindex,yindex)) { isolated = table->vars[yindex]->ref == 1; R -= (int) table->subtables[y].keys - isolated; } size = cuddSwapInPlace(table,x,y); if (size == 0) goto ddSiftingDownOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSiftingDownOutOfMem; move->x = x; move->y = y; move->size = size; move->next = moves; moves = move; if ((double) size > (double) limitSize * table->maxGrowth) break; if (size < limitSize) limitSize = size; x = y; y = cuddNextHigh(table,x); } return(moves); ddSiftingDownOutOfMem: while (moves != NULL) { move = moves->next; cuddDeallocMove(table, moves); moves = move; } return((Move *) CUDD_OUT_OF_MEM); } /* end of ddSiftingDown */ /** @brief Given a set of moves, returns the %DD heap to the position giving the minimum size. @details In case of ties, returns to the closest position giving the minimum size. @return 1 in case of success; 0 otherwise. @sideeffect None */ static int ddSiftingBackward( DdManager * table, int size, Move * moves) { Move *move; int res; for (move = moves; move != NULL; move = move->next) { if (move->size < size) { size = move->size; } } for (move = moves; move != NULL; move = move->next) { if (move->size == size) return(1); res = cuddSwapInPlace(table,(int)move->x,(int)move->y); if (!res) return(0); } return(1); } /* end of ddSiftingBackward */ /** @brief Prepares the %DD heap for dynamic reordering. @details Does garbage collection, to guarantee that there are no dead nodes; clears the cache, which is invalidated by dynamic reordering; initializes the number of isolated projection functions; and initializes the interaction matrix. @return 1 in case of success; 0 otherwise. @sideeffect None */ static int ddReorderPreprocess( DdManager * table) { int i; int res; /* Clear the cache. */ cuddCacheFlush(table); cuddLocalCacheClearAll(table); /* Eliminate dead nodes. Do not scan the cache again. */ cuddGarbageCollect(table,0); /* Initialize number of isolated projection functions. */ table->isolated = 0; for (i = 0; i < table->size; i++) { if (table->vars[i]->ref == 1) table->isolated++; } /* Initialize the interaction matrix. */ res = cuddInitInteract(table); if (res == 0) return(0); return(1); } /* end of ddReorderPreprocess */ /** @brief Cleans up at the end of reordering. @sideeffect None */ static int ddReorderPostprocess( DdManager * table) { #ifdef DD_VERBOSE (void) fflush(table->out); #endif /* Free interaction matrix. */ FREE(table->interact); return(1); } /* end of ddReorderPostprocess */ /** @brief Reorders variables according to a given permutation. @details The i-th permutation array contains the index of the variable that should be brought to the i-th level. ddShuffle assumes that no dead nodes are present and that the interaction matrix is properly initialized. The reordering is achieved by a series of upward sifts. @return 1 if successful; 0 otherwise. @sideeffect None */ static int ddShuffle( DdManager * table, int * permutation) { int index; int level; int position; int numvars; int result; #ifdef DD_STATS unsigned long localTime; int initialSize; int finalSize; int previousSize; #endif table->ddTotalNumberSwapping = 0; #ifdef DD_STATS localTime = util_cpu_time(); initialSize = table->keys - table->isolated; (void) fprintf(table->out,"#:I_SHUFFLE %8d: initial size\n", initialSize); table->totalNISwaps = 0; #endif numvars = table->size; for (level = 0; level < numvars; level++) { index = permutation[level]; position = table->perm[index]; #ifdef DD_STATS previousSize = table->keys - table->isolated; #endif result = ddSiftUp(table,position,level); if (!result) return(0); #ifdef DD_STATS if (table->keys < (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"-"); } else if (table->keys > (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"+"); /* should never happen */ } else { (void) fprintf(table->out,"="); } fflush(table->out); #endif } #ifdef DD_STATS (void) fprintf(table->out,"\n"); finalSize = table->keys - table->isolated; (void) fprintf(table->out,"#:F_SHUFFLE %8d: final size\n",finalSize); (void) fprintf(table->out,"#:T_SHUFFLE %8g: total time (sec)\n", ((double)(util_cpu_time() - localTime)/1000.0)); (void) fprintf(table->out,"#:N_SHUFFLE %8d: total swaps\n", table->ddTotalNumberSwapping); (void) fprintf(table->out,"#:M_SHUFFLE %8d: NI swaps\n", table->totalNISwaps); #endif return(1); } /* end of ddShuffle */ /** @brief Moves one variable up. @details Takes a variable from position x and sifts it up to position xLow; xLow should be less than or equal to x. @return 1 if successful; 0 otherwise @sideeffect None */ static int ddSiftUp( DdManager * table, int x, int xLow) { int y; int size; y = cuddNextLow(table,x); while (y >= xLow) { size = cuddSwapInPlace(table,y,x); if (size == 0) { return(0); } x = y; y = cuddNextLow(table,x); } return(1); } /* end of ddSiftUp */ /** @brief Fixes the %BDD variable group tree after a shuffle. @details Assumes that the order of the variables in a terminal node has not been changed. @sideeffect Changes the %BDD variable group tree. */ static void bddFixTree( DdManager * table, MtrNode * treenode) { if (treenode == NULL) return; treenode->low = ((int) treenode->index < table->size) ? (MtrHalfWord) table->perm[treenode->index] : treenode->index; if (treenode->child != NULL) { bddFixTree(table, treenode->child); } if (treenode->younger != NULL) bddFixTree(table, treenode->younger); if (treenode->parent != NULL && treenode->low < treenode->parent->low) { treenode->parent->low = treenode->low; treenode->parent->index = treenode->index; } return; } /* end of bddFixTree */ /** @brief Updates the %BDD variable group tree before a shuffle. @return 1 if successful; 0 otherwise. @sideeffect Changes the %BDD variable group tree. */ static int ddUpdateMtrTree( DdManager * table, MtrNode * treenode, int * perm, int * invperm) { unsigned int i, size; int index, level, minLevel, maxLevel, minIndex; if (treenode == NULL) return(1); minLevel = CUDD_MAXINDEX; maxLevel = 0; minIndex = -1; /* i : level */ for (i = treenode->low; i < treenode->low + treenode->size; i++) { index = table->invperm[i]; level = perm[index]; if (level < minLevel) { minLevel = level; minIndex = index; } if (level > maxLevel) maxLevel = level; } size = maxLevel - minLevel + 1; if (minIndex == -1) return(0); if (size == treenode->size) { treenode->low = minLevel; treenode->index = minIndex; } else { return(0); } if (treenode->child != NULL) { if (!ddUpdateMtrTree(table, treenode->child, perm, invperm)) return(0); } if (treenode->younger != NULL) { if (!ddUpdateMtrTree(table, treenode->younger, perm, invperm)) return(0); } return(1); } /** @brief Checks the %BDD variable group tree before a shuffle. @return 1 if successful; 0 otherwise. @sideeffect Changes the %BDD variable group tree. */ static int ddCheckPermuation( DdManager * table, MtrNode * treenode, int * perm, int * invperm) { unsigned int i, size; int index, level, minLevel, maxLevel; if (treenode == NULL) return(1); minLevel = table->size; maxLevel = 0; /* i : level */ for (i = treenode->low; i < treenode->low + treenode->size; i++) { index = table->invperm[i]; level = perm[index]; if (level < minLevel) minLevel = level; if (level > maxLevel) maxLevel = level; } size = maxLevel - minLevel + 1; if (size != treenode->size) return(0); if (treenode->child != NULL) { if (!ddCheckPermuation(table, treenode->child, perm, invperm)) return(0); } if (treenode->younger != NULL) { if (!ddCheckPermuation(table, treenode->younger, perm, invperm)) return(0); } return(1); }