/**
@file
@ingroup cudd
@brief Priority functions.
@author Fabio Somenzi
@copyright@parblock
Copyright (c) 1995-2015, Regents of the University of Colorado
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Neither the name of the University of Colorado nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
@endparblock
*/
#include "util.h"
#include "cuddInt.h"
/*---------------------------------------------------------------------------*/
/* Constant declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Stucture declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Type declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Macro declarations */
/*---------------------------------------------------------------------------*/
/** \cond */
/*---------------------------------------------------------------------------*/
/* Static function prototypes */
/*---------------------------------------------------------------------------*/
static int cuddMinHammingDistRecur (DdNode * f, int *minterm, DdHashTable * table, int upperBound);
static DdNode * separateCube (DdManager *dd, DdNode *f, CUDD_VALUE_TYPE *distance);
static DdNode * createResult (DdManager *dd, unsigned int index, unsigned int phase, DdNode *cube, CUDD_VALUE_TYPE distance);
/** \endcond */
/*---------------------------------------------------------------------------*/
/* Definition of exported functions */
/*---------------------------------------------------------------------------*/
/**
@brief Selects pairs from R using a priority function.
@details Selects pairs from a relation R(x,y) (given as a %BDD)
in such a way that a given x appears in one pair only. Uses a
priority function to determine which y should be paired to a given x.
Three of the arguments--x, y, and z--are vectors of %BDD variables.
The first two are the variables on which R depends. The third vector
is a vector of auxiliary variables, used during the computation. This
vector is optional. If a NULL value is passed instead,
Cudd_PrioritySelect will create the working variables on the fly.
The sizes of x and y (and z if it is not NULL) should equal n.
The priority function Pi can be passed as a %BDD, or can be built by
Cudd_PrioritySelect. If NULL is passed instead of a DdNode *,
parameter Pifunc is used by Cudd_PrioritySelect to build a %BDD for the
priority function. (Pifunc is a pointer to a C function.) If Pi is not
NULL, then Pifunc is ignored. Pifunc should have the same interface as
the standard priority functions (e.g., Cudd_Dxygtdxz).
Cudd_PrioritySelect and Cudd_CProjection can sometimes be used
interchangeably. Specifically, calling Cudd_PrioritySelect with
Cudd_Xgty as Pifunc produces the same result as calling
Cudd_CProjection with the all-zero minterm as reference minterm.
However, depending on the application, one or the other may be
preferable:
- When extracting representatives from an equivalence relation,
Cudd_CProjection has the advantage of nor requiring the auxiliary
variables.
- When computing matchings in general bipartite graphs,
Cudd_PrioritySelect normally obtains better results because it can use
more powerful matching schemes (e.g., Cudd_Dxygtdxz).
@return a pointer to the selected function if successful; NULL
otherwise.
@sideeffect If called with z == NULL, will create new variables in
the manager.
@see Cudd_Dxygtdxz Cudd_Dxygtdyz Cudd_Xgty
Cudd_bddAdjPermuteX Cudd_CProjection
*/
DdNode *
Cudd_PrioritySelect(
DdManager * dd /**< manager */,
DdNode * R /**< %BDD of the relation */,
DdNode ** x /**< array of x variables */,
DdNode ** y /**< array of y variables */,
DdNode ** z /**< array of z variables (optional: may be NULL) */,
DdNode * Pi /**< %BDD of the priority function (optional: may be NULL) */,
int n /**< size of x, y, and z */,
DD_PRFP Pifunc /**< function used to build Pi if it is NULL */)
{
DdNode *res = NULL;
DdNode *zcube = NULL;
DdNode *Rxz, *Q;
int createdZ = 0;
int createdPi = 0;
int i;
/* Create z variables if needed. */
if (z == NULL) {
if (Pi != NULL) return(NULL);
z = ALLOC(DdNode *,n);
if (z == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(NULL);
}
createdZ = 1;
for (i = 0; i < n; i++) {
if (dd->size >= (int) CUDD_MAXINDEX - 1) goto endgame;
z[i] = cuddUniqueInter(dd,dd->size,dd->one,Cudd_Not(dd->one));
if (z[i] == NULL) goto endgame;
}
}
/* Create priority function BDD if needed. */
if (Pi == NULL) {
Pi = Pifunc(dd,n,x,y,z);
if (Pi == NULL) goto endgame;
createdPi = 1;
cuddRef(Pi);
}
/* Initialize abstraction cube. */
zcube = DD_ONE(dd);
cuddRef(zcube);
for (i = n - 1; i >= 0; i--) {
DdNode *tmpp;
tmpp = Cudd_bddAnd(dd,z[i],zcube);
if (tmpp == NULL) goto endgame;
cuddRef(tmpp);
Cudd_RecursiveDeref(dd,zcube);
zcube = tmpp;
}
/* Compute subset of (x,y) pairs. */
Rxz = Cudd_bddSwapVariables(dd,R,y,z,n);
if (Rxz == NULL) goto endgame;
cuddRef(Rxz);
Q = Cudd_bddAndAbstract(dd,Rxz,Pi,zcube);
if (Q == NULL) {
Cudd_RecursiveDeref(dd,Rxz);
goto endgame;
}
cuddRef(Q);
Cudd_RecursiveDeref(dd,Rxz);
res = Cudd_bddAnd(dd,R,Cudd_Not(Q));
if (res == NULL) {
Cudd_RecursiveDeref(dd,Q);
goto endgame;
}
cuddRef(res);
Cudd_RecursiveDeref(dd,Q);
endgame:
if (zcube != NULL) Cudd_RecursiveDeref(dd,zcube);
if (createdZ) {
FREE(z);
}
if (createdPi) {
Cudd_RecursiveDeref(dd,Pi);
}
if (res != NULL) cuddDeref(res);
return(res);
} /* Cudd_PrioritySelect */
/**
@brief Generates a %BDD for the function x > y.
@details This function generates a %BDD for the function x > y.
Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and
y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit.
The %BDD is built bottom-up.
It has 3*N-1 internal nodes, if the variables are ordered as follows:
x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].
Argument z is not used by Cudd_Xgty: it is included to make it
call-compatible to Cudd_Dxygtdxz and Cudd_Dxygtdyz.
@sideeffect None
@see Cudd_PrioritySelect Cudd_Dxygtdxz Cudd_Dxygtdyz
*/
DdNode *
Cudd_Xgty(
DdManager * dd /**< %DD manager */,
int N /**< number of x and y variables */,
DdNode ** z /**< array of z variables: unused */,
DdNode ** x /**< array of x variables */,
DdNode ** y /**< array of y variables */)
{
DdNode *u, *v, *w;
int i;
(void) z; /* avoid warning */
/* Build bottom part of BDD outside loop. */
u = Cudd_bddAnd(dd, x[N-1], Cudd_Not(y[N-1]));
if (u == NULL) return(NULL);
cuddRef(u);
/* Loop to build the rest of the BDD. */
for (i = N-2; i >= 0; i--) {
v = Cudd_bddAnd(dd, y[i], Cudd_Not(u));
if (v == NULL) {
Cudd_RecursiveDeref(dd, u);
return(NULL);
}
cuddRef(v);
w = Cudd_bddAnd(dd, Cudd_Not(y[i]), u);
if (w == NULL) {
Cudd_RecursiveDeref(dd, u);
Cudd_RecursiveDeref(dd, v);
return(NULL);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, u);
u = Cudd_bddIte(dd, x[i], Cudd_Not(v), w);
if (u == NULL) {
Cudd_RecursiveDeref(dd, v);
Cudd_RecursiveDeref(dd, w);
return(NULL);
}
cuddRef(u);
Cudd_RecursiveDeref(dd, v);
Cudd_RecursiveDeref(dd, w);
}
cuddDeref(u);
return(u);
} /* end of Cudd_Xgty */
/**
@brief Generates a %BDD for the function x==y.
@details This function generates a %BDD for the function x==y.
Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and
y\[0\] y\[1\] ... y\[N-1\]. The %BDD is built bottom-up.
It has 3*N-1 internal nodes, if the variables are ordered as follows:
x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].
@sideeffect None
@see Cudd_addXeqy
*/
DdNode *
Cudd_Xeqy(
DdManager * dd /**< %DD manager */,
int N /**< number of x and y variables */,
DdNode ** x /**< array of x variables */,
DdNode ** y /**< array of y variables */)
{
DdNode *u, *v, *w;
int i;
/* Build bottom part of BDD outside loop. */
u = Cudd_bddIte(dd, x[N-1], y[N-1], Cudd_Not(y[N-1]));
if (u == NULL) return(NULL);
cuddRef(u);
/* Loop to build the rest of the BDD. */
for (i = N-2; i >= 0; i--) {
v = Cudd_bddAnd(dd, y[i], u);
if (v == NULL) {
Cudd_RecursiveDeref(dd, u);
return(NULL);
}
cuddRef(v);
w = Cudd_bddAnd(dd, Cudd_Not(y[i]), u);
if (w == NULL) {
Cudd_RecursiveDeref(dd, u);
Cudd_RecursiveDeref(dd, v);
return(NULL);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, u);
u = Cudd_bddIte(dd, x[i], v, w);
if (u == NULL) {
Cudd_RecursiveDeref(dd, v);
Cudd_RecursiveDeref(dd, w);
return(NULL);
}
cuddRef(u);
Cudd_RecursiveDeref(dd, v);
Cudd_RecursiveDeref(dd, w);
}
cuddDeref(u);
return(u);
} /* end of Cudd_Xeqy */
/**
@brief Generates an %ADD for the function x==y.
@details This function generates an %ADD for the function x==y.
Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and
y\[0\] y\[1\] ... y\[N-1\]. The %ADD is built bottom-up.
It has 3*N-1 internal nodes, if the variables are ordered as follows:
x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].
@sideeffect None
@see Cudd_Xeqy
*/
DdNode *
Cudd_addXeqy(
DdManager * dd /**< %DD manager */,
int N /**< number of x and y variables */,
DdNode ** x /**< array of x variables */,
DdNode ** y /**< array of y variables */)
{
DdNode *one, *zero;
DdNode *u, *v, *w;
int i;
one = DD_ONE(dd);
zero = DD_ZERO(dd);
/* Build bottom part of ADD outside loop. */
v = Cudd_addIte(dd, y[N-1], one, zero);
if (v == NULL) return(NULL);
cuddRef(v);
w = Cudd_addIte(dd, y[N-1], zero, one);
if (w == NULL) {
Cudd_RecursiveDeref(dd, v);
return(NULL);
}
cuddRef(w);
u = Cudd_addIte(dd, x[N-1], v, w);
if (u == NULL) {
Cudd_RecursiveDeref(dd, v);
Cudd_RecursiveDeref(dd, w);
return(NULL);
}
cuddRef(u);
Cudd_RecursiveDeref(dd, v);
Cudd_RecursiveDeref(dd, w);
/* Loop to build the rest of the ADD. */
for (i = N-2; i >= 0; i--) {
v = Cudd_addIte(dd, y[i], u, zero);
if (v == NULL) {
Cudd_RecursiveDeref(dd, u);
return(NULL);
}
cuddRef(v);
w = Cudd_addIte(dd, y[i], zero, u);
if (w == NULL) {
Cudd_RecursiveDeref(dd, u);
Cudd_RecursiveDeref(dd, v);
return(NULL);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, u);
u = Cudd_addIte(dd, x[i], v, w);
if (w == NULL) {
Cudd_RecursiveDeref(dd, v);
Cudd_RecursiveDeref(dd, w);
return(NULL);
}
cuddRef(u);
Cudd_RecursiveDeref(dd, v);
Cudd_RecursiveDeref(dd, w);
}
cuddDeref(u);
return(u);
} /* end of Cudd_addXeqy */
/**
@brief Generates a %BDD for the function d(x,y) > d(x,z).
@details This function generates a %BDD for the function d(x,y)
> d(x,z);
x, y, and z are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\],
y\[0\] y\[1\] ... y\[N-1\], and z\[0\] z\[1\] ... z\[N-1\],
with 0 the most significant bit.
The distance d(x,y) is defined as:
\f$\sum_{i=0}^{N-1}(|x_i - y_i| \cdot 2^{N-i-1})\f$.
The %BDD is built bottom-up.
It has 7*N-3 internal nodes, if the variables are ordered as follows:
x\[0\] y\[0\] z\[0\] x\[1\] y\[1\] z\[1\] ... x\[N-1\] y\[N-1\] z\[N-1\].
@sideeffect None
@see Cudd_PrioritySelect Cudd_Dxygtdyz Cudd_Xgty Cudd_bddAdjPermuteX
*/
DdNode *
Cudd_Dxygtdxz(
DdManager * dd /**< %DD manager */,
int N /**< number of x, y, and z variables */,
DdNode ** x /**< array of x variables */,
DdNode ** y /**< array of y variables */,
DdNode ** z /**< array of z variables */)
{
DdNode *one, *zero;
DdNode *z1, *z2, *z3, *z4, *y1_, *y2, *x1;
int i;
one = DD_ONE(dd);
zero = Cudd_Not(one);
/* Build bottom part of BDD outside loop. */
y1_ = Cudd_bddIte(dd, y[N-1], one, Cudd_Not(z[N-1]));
if (y1_ == NULL) return(NULL);
cuddRef(y1_);
y2 = Cudd_bddIte(dd, y[N-1], z[N-1], one);
if (y2 == NULL) {
Cudd_RecursiveDeref(dd, y1_);
return(NULL);
}
cuddRef(y2);
x1 = Cudd_bddIte(dd, x[N-1], y1_, y2);
if (x1 == NULL) {
Cudd_RecursiveDeref(dd, y1_);
Cudd_RecursiveDeref(dd, y2);
return(NULL);
}
cuddRef(x1);
Cudd_RecursiveDeref(dd, y1_);
Cudd_RecursiveDeref(dd, y2);
/* Loop to build the rest of the BDD. */
for (i = N-2; i >= 0; i--) {
z1 = Cudd_bddIte(dd, z[i], one, Cudd_Not(x1));
if (z1 == NULL) {
Cudd_RecursiveDeref(dd, x1);
return(NULL);
}
cuddRef(z1);
z2 = Cudd_bddIte(dd, z[i], x1, one);
if (z2 == NULL) {
Cudd_RecursiveDeref(dd, x1);
Cudd_RecursiveDeref(dd, z1);
return(NULL);
}
cuddRef(z2);
z3 = Cudd_bddIte(dd, z[i], one, x1);
if (z3 == NULL) {
Cudd_RecursiveDeref(dd, x1);
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
return(NULL);
}
cuddRef(z3);
z4 = Cudd_bddIte(dd, z[i], x1, zero);
if (z4 == NULL) {
Cudd_RecursiveDeref(dd, x1);
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
Cudd_RecursiveDeref(dd, z3);
return(NULL);
}
cuddRef(z4);
Cudd_RecursiveDeref(dd, x1);
y1_ = Cudd_bddIte(dd, y[i], z2, Cudd_Not(z1));
if (y1_ == NULL) {
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
Cudd_RecursiveDeref(dd, z3);
Cudd_RecursiveDeref(dd, z4);
return(NULL);
}
cuddRef(y1_);
y2 = Cudd_bddIte(dd, y[i], z4, z3);
if (y2 == NULL) {
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
Cudd_RecursiveDeref(dd, z3);
Cudd_RecursiveDeref(dd, z4);
Cudd_RecursiveDeref(dd, y1_);
return(NULL);
}
cuddRef(y2);
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
Cudd_RecursiveDeref(dd, z3);
Cudd_RecursiveDeref(dd, z4);
x1 = Cudd_bddIte(dd, x[i], y1_, y2);
if (x1 == NULL) {
Cudd_RecursiveDeref(dd, y1_);
Cudd_RecursiveDeref(dd, y2);
return(NULL);
}
cuddRef(x1);
Cudd_RecursiveDeref(dd, y1_);
Cudd_RecursiveDeref(dd, y2);
}
cuddDeref(x1);
return(Cudd_Not(x1));
} /* end of Cudd_Dxygtdxz */
/**
@brief Generates a %BDD for the function d(x,y) > d(y,z).
@details This function generates a %BDD for the function d(x,y)
> d(y,z);
x, y, and z are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\],
y\[0\] y\[1\] ... y\[N-1\], and z\[0\] z\[1\] ... z\[N-1\],
with 0 the most significant bit.
The distance d(x,y) is defined as:
\f$\sum_{i=0}^{N-1}(|x_i - y_i| \cdot 2^{N-i-1})\f$.
The %BDD is built bottom-up.
It has 7*N-3 internal nodes, if the variables are ordered as follows:
x\[0\] y\[0\] z\[0\] x\[1\] y\[1\] z\[1\] ... x\[N-1\] y\[N-1\] z\[N-1\].
@sideeffect None
@see Cudd_PrioritySelect Cudd_Dxygtdxz Cudd_Xgty Cudd_bddAdjPermuteX
*/
DdNode *
Cudd_Dxygtdyz(
DdManager * dd /**< %DD manager */,
int N /**< number of x, y, and z variables */,
DdNode ** x /**< array of x variables */,
DdNode ** y /**< array of y variables */,
DdNode ** z /**< array of z variables */)
{
DdNode *one, *zero;
DdNode *z1, *z2, *z3, *z4, *y1_, *y2, *x1;
int i;
one = DD_ONE(dd);
zero = Cudd_Not(one);
/* Build bottom part of BDD outside loop. */
y1_ = Cudd_bddIte(dd, y[N-1], one, z[N-1]);
if (y1_ == NULL) return(NULL);
cuddRef(y1_);
y2 = Cudd_bddIte(dd, y[N-1], z[N-1], zero);
if (y2 == NULL) {
Cudd_RecursiveDeref(dd, y1_);
return(NULL);
}
cuddRef(y2);
x1 = Cudd_bddIte(dd, x[N-1], y1_, Cudd_Not(y2));
if (x1 == NULL) {
Cudd_RecursiveDeref(dd, y1_);
Cudd_RecursiveDeref(dd, y2);
return(NULL);
}
cuddRef(x1);
Cudd_RecursiveDeref(dd, y1_);
Cudd_RecursiveDeref(dd, y2);
/* Loop to build the rest of the BDD. */
for (i = N-2; i >= 0; i--) {
z1 = Cudd_bddIte(dd, z[i], x1, zero);
if (z1 == NULL) {
Cudd_RecursiveDeref(dd, x1);
return(NULL);
}
cuddRef(z1);
z2 = Cudd_bddIte(dd, z[i], x1, one);
if (z2 == NULL) {
Cudd_RecursiveDeref(dd, x1);
Cudd_RecursiveDeref(dd, z1);
return(NULL);
}
cuddRef(z2);
z3 = Cudd_bddIte(dd, z[i], one, x1);
if (z3 == NULL) {
Cudd_RecursiveDeref(dd, x1);
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
return(NULL);
}
cuddRef(z3);
z4 = Cudd_bddIte(dd, z[i], one, Cudd_Not(x1));
if (z4 == NULL) {
Cudd_RecursiveDeref(dd, x1);
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
Cudd_RecursiveDeref(dd, z3);
return(NULL);
}
cuddRef(z4);
Cudd_RecursiveDeref(dd, x1);
y1_ = Cudd_bddIte(dd, y[i], z2, z1);
if (y1_ == NULL) {
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
Cudd_RecursiveDeref(dd, z3);
Cudd_RecursiveDeref(dd, z4);
return(NULL);
}
cuddRef(y1_);
y2 = Cudd_bddIte(dd, y[i], z4, Cudd_Not(z3));
if (y2 == NULL) {
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
Cudd_RecursiveDeref(dd, z3);
Cudd_RecursiveDeref(dd, z4);
Cudd_RecursiveDeref(dd, y1_);
return(NULL);
}
cuddRef(y2);
Cudd_RecursiveDeref(dd, z1);
Cudd_RecursiveDeref(dd, z2);
Cudd_RecursiveDeref(dd, z3);
Cudd_RecursiveDeref(dd, z4);
x1 = Cudd_bddIte(dd, x[i], y1_, Cudd_Not(y2));
if (x1 == NULL) {
Cudd_RecursiveDeref(dd, y1_);
Cudd_RecursiveDeref(dd, y2);
return(NULL);
}
cuddRef(x1);
Cudd_RecursiveDeref(dd, y1_);
Cudd_RecursiveDeref(dd, y2);
}
cuddDeref(x1);
return(Cudd_Not(x1));
} /* end of Cudd_Dxygtdyz */
/**
@brief Generates a %BDD for the function x - y ≥ c.
@details This function generates a %BDD for the function x -y ≥ c.
Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and
y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit.
The %BDD is built bottom-up.
It has a linear number of nodes if the variables are ordered as follows:
x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].
@sideeffect None
@see Cudd_Xgty
*/
DdNode *
Cudd_Inequality(
DdManager * dd /**< %DD manager */,
int N /**< number of x and y variables */,
int c /**< right-hand side constant */,
DdNode ** x /**< array of x variables */,
DdNode ** y /**< array of y variables */)
{
/* The nodes at level i represent values of the difference that are
** multiples of 2^i. We use variables with names starting with k
** to denote the multipliers of 2^i in such multiples. */
int kTrue = c;
int kFalse = c - 1;
/* Mask used to compute the ceiling function. Since we divide by 2^i,
** we want to know whether the dividend is a multiple of 2^i. If it is,
** then ceiling and floor coincide; otherwise, they differ by one. */
int mask = 1;
int i;
DdNode *f = NULL; /* the eventual result */
DdNode *one = DD_ONE(dd);
DdNode *zero = Cudd_Not(one);
/* Two x-labeled nodes are created at most at each iteration. They are
** stored, along with their k values, in these variables. At each level,
** the old nodes are freed and the new nodes are copied into the old map.
*/
DdNode *map[2] = {NULL, NULL};
int invalidIndex = 1 << (N-1);
int index[2] = {invalidIndex, invalidIndex};
/* This should never happen. */
if (N < 0) return(NULL);
/* If there are no bits, both operands are 0. The result depends on c. */
if (N == 0) {
if (c >= 0) return(one);
else return(zero);
}
/* The maximum or the minimum difference comparing to c can generate the terminal case */
if ((1 << N) - 1 < c) return(zero);
else if ((-(1 << N) + 1) >= c) return(one);
/* Build the result bottom up. */
for (i = 1; i <= N; i++) {
int kTrueLower, kFalseLower;
int leftChild, middleChild, rightChild;
DdNode *g0, *g1, *fplus, *fequal, *fminus;
int j;
DdNode *newMap[2] = {NULL, NULL};
int newIndex[2];
kTrueLower = kTrue;
kFalseLower = kFalse;
/* kTrue = ceiling((c-1)/2^i) + 1 */
kTrue = ((c-1) >> i) + ((c & mask) != 1) + 1;
mask = (mask << 1) | 1;
/* kFalse = floor(c/2^i) - 1 */
kFalse = (c >> i) - 1;
newIndex[0] = invalidIndex;
newIndex[1] = invalidIndex;
for (j = kFalse + 1; j < kTrue; j++) {
/* Skip if node is not reachable from top of BDD. */
if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue;
/* Find f- */
leftChild = (j << 1) - 1;
if (leftChild >= kTrueLower) {
fminus = one;
} else if (leftChild <= kFalseLower) {
fminus = zero;
} else {
assert(leftChild == index[0] || leftChild == index[1]);
if (leftChild == index[0]) {
fminus = map[0];
} else {
fminus = map[1];
}
}
/* Find f= */
middleChild = j << 1;
if (middleChild >= kTrueLower) {
fequal = one;
} else if (middleChild <= kFalseLower) {
fequal = zero;
} else {
assert(middleChild == index[0] || middleChild == index[1]);
if (middleChild == index[0]) {
fequal = map[0];
} else {
fequal = map[1];
}
}
/* Find f+ */
rightChild = (j << 1) + 1;
if (rightChild >= kTrueLower) {
fplus = one;
} else if (rightChild <= kFalseLower) {
fplus = zero;
} else {
assert(rightChild == index[0] || rightChild == index[1]);
if (rightChild == index[0]) {
fplus = map[0];
} else {
fplus = map[1];
}
}
/* Build new nodes. */
g1 = Cudd_bddIte(dd, y[N - i], fequal, fplus);
if (g1 == NULL) {
if (index[0] != invalidIndex) Cudd_IterDerefBdd(dd, map[0]);
if (index[1] != invalidIndex) Cudd_IterDerefBdd(dd, map[1]);
if (newIndex[0] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[0]);
if (newIndex[1] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[1]);
return(NULL);
}
cuddRef(g1);
g0 = Cudd_bddIte(dd, y[N - i], fminus, fequal);
if (g0 == NULL) {
Cudd_IterDerefBdd(dd, g1);
if (index[0] != invalidIndex) Cudd_IterDerefBdd(dd, map[0]);
if (index[1] != invalidIndex) Cudd_IterDerefBdd(dd, map[1]);
if (newIndex[0] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[0]);
if (newIndex[1] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[1]);
return(NULL);
}
cuddRef(g0);
f = Cudd_bddIte(dd, x[N - i], g1, g0);
if (f == NULL) {
Cudd_IterDerefBdd(dd, g1);
Cudd_IterDerefBdd(dd, g0);
if (index[0] != invalidIndex) Cudd_IterDerefBdd(dd, map[0]);
if (index[1] != invalidIndex) Cudd_IterDerefBdd(dd, map[1]);
if (newIndex[0] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[0]);
if (newIndex[1] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[1]);
return(NULL);
}
cuddRef(f);
Cudd_IterDerefBdd(dd, g1);
Cudd_IterDerefBdd(dd, g0);
/* Save newly computed node in map. */
assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex);
if (newIndex[0] == invalidIndex) {
newIndex[0] = j;
newMap[0] = f;
} else {
newIndex[1] = j;
newMap[1] = f;
}
}
/* Copy new map to map. */
if (index[0] != invalidIndex) Cudd_IterDerefBdd(dd, map[0]);
if (index[1] != invalidIndex) Cudd_IterDerefBdd(dd, map[1]);
map[0] = newMap[0];
map[1] = newMap[1];
index[0] = newIndex[0];
index[1] = newIndex[1];
}
cuddDeref(f);
return(f);
} /* end of Cudd_Inequality */
/**
@brief Generates a %BDD for the function x - y != c.
@details This function generates a %BDD for the function x -y != c.
Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and
y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit.
The %BDD is built bottom-up.
It has a linear number of nodes if the variables are ordered as follows:
x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].
@sideeffect None
@see Cudd_Xgty
*/
DdNode *
Cudd_Disequality(
DdManager * dd /**< %DD manager */,
int N /**< number of x and y variables */,
int c /**< right-hand side constant */,
DdNode ** x /**< array of x variables */,
DdNode ** y /**< array of y variables */)
{
/* The nodes at level i represent values of the difference that are
** multiples of 2^i. We use variables with names starting with k
** to denote the multipliers of 2^i in such multiples. */
int kTrueLb = c + 1;
int kTrueUb = c - 1;
int kFalse = c;
/* Mask used to compute the ceiling function. Since we divide by 2^i,
** we want to know whether the dividend is a multiple of 2^i. If it is,
** then ceiling and floor coincide; otherwise, they differ by one. */
int mask = 1;
int i;
DdNode *f = NULL; /* the eventual result */
DdNode *one = DD_ONE(dd);
DdNode *zero = Cudd_Not(one);
/* Two x-labeled nodes are created at most at each iteration. They are
** stored, along with their k values, in these variables. At each level,
** the old nodes are freed and the new nodes are copied into the old map.
*/
DdNode *map[2] = {NULL, NULL};
int invalidIndex = 1 << (N-1);
int index[2] = {invalidIndex, invalidIndex};
/* This should never happen. */
if (N < 0) return(NULL);
/* If there are no bits, both operands are 0. The result depends on c. */
if (N == 0) {
if (c != 0) return(one);
else return(zero);
}
/* The maximum or the minimum difference comparing to c can generate the terminal case */
if ((1 << N) - 1 < c || (-(1 << N) + 1) > c) return(one);
/* Build the result bottom up. */
for (i = 1; i <= N; i++) {
int kTrueLbLower, kTrueUbLower;
int leftChild, middleChild, rightChild;
DdNode *g0, *g1, *fplus, *fequal, *fminus;
int j;
DdNode *newMap[2] = {NULL, NULL};
int newIndex[2];
kTrueLbLower = kTrueLb;
kTrueUbLower = kTrueUb;
/* kTrueLb = floor((c-1)/2^i) + 2 */
kTrueLb = ((c-1) >> i) + 2;
/* kTrueUb = ceiling((c+1)/2^i) - 2 */
kTrueUb = ((c+1) >> i) + (((c+2) & mask) != 1) - 2;
mask = (mask << 1) | 1;
newIndex[0] = invalidIndex;
newIndex[1] = invalidIndex;
for (j = kTrueUb + 1; j < kTrueLb; j++) {
/* Skip if node is not reachable from top of BDD. */
if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue;
/* Find f- */
leftChild = (j << 1) - 1;
if (leftChild >= kTrueLbLower || leftChild <= kTrueUbLower) {
fminus = one;
} else if (i == 1 && leftChild == kFalse) {
fminus = zero;
} else {
assert(leftChild == index[0] || leftChild == index[1]);
if (leftChild == index[0]) {
fminus = map[0];
} else {
fminus = map[1];
}
}
/* Find f= */
middleChild = j << 1;
if (middleChild >= kTrueLbLower || middleChild <= kTrueUbLower) {
fequal = one;
} else if (i == 1 && middleChild == kFalse) {
fequal = zero;
} else {
assert(middleChild == index[0] || middleChild == index[1]);
if (middleChild == index[0]) {
fequal = map[0];
} else {
fequal = map[1];
}
}
/* Find f+ */
rightChild = (j << 1) + 1;
if (rightChild >= kTrueLbLower || rightChild <= kTrueUbLower) {
fplus = one;
} else if (i == 1 && rightChild == kFalse) {
fplus = zero;
} else {
assert(rightChild == index[0] || rightChild == index[1]);
if (rightChild == index[0]) {
fplus = map[0];
} else {
fplus = map[1];
}
}
/* Build new nodes. */
g1 = Cudd_bddIte(dd, y[N - i], fequal, fplus);
if (g1 == NULL) {
if (index[0] != invalidIndex) Cudd_IterDerefBdd(dd, map[0]);
if (index[1] != invalidIndex) Cudd_IterDerefBdd(dd, map[1]);
if (newIndex[0] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[0]);
if (newIndex[1] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[1]);
return(NULL);
}
cuddRef(g1);
g0 = Cudd_bddIte(dd, y[N - i], fminus, fequal);
if (g0 == NULL) {
Cudd_IterDerefBdd(dd, g1);
if (index[0] != invalidIndex) Cudd_IterDerefBdd(dd, map[0]);
if (index[1] != invalidIndex) Cudd_IterDerefBdd(dd, map[1]);
if (newIndex[0] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[0]);
if (newIndex[1] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[1]);
return(NULL);
}
cuddRef(g0);
f = Cudd_bddIte(dd, x[N - i], g1, g0);
if (f == NULL) {
Cudd_IterDerefBdd(dd, g1);
Cudd_IterDerefBdd(dd, g0);
if (index[0] != invalidIndex) Cudd_IterDerefBdd(dd, map[0]);
if (index[1] != invalidIndex) Cudd_IterDerefBdd(dd, map[1]);
if (newIndex[0] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[0]);
if (newIndex[1] != invalidIndex) Cudd_IterDerefBdd(dd, newMap[1]);
return(NULL);
}
cuddRef(f);
Cudd_IterDerefBdd(dd, g1);
Cudd_IterDerefBdd(dd, g0);
/* Save newly computed node in map. */
assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex);
if (newIndex[0] == invalidIndex) {
newIndex[0] = j;
newMap[0] = f;
} else {
newIndex[1] = j;
newMap[1] = f;
}
}
/* Copy new map to map. */
if (index[0] != invalidIndex) Cudd_IterDerefBdd(dd, map[0]);
if (index[1] != invalidIndex) Cudd_IterDerefBdd(dd, map[1]);
map[0] = newMap[0];
map[1] = newMap[1];
index[0] = newIndex[0];
index[1] = newIndex[1];
}
cuddDeref(f);
return(f);
} /* end of Cudd_Disequality */
/**
@brief Generates a %BDD for the function lowerB ≤ x ≤ upperB.
@details This function generates a %BDD for the function
lowerB ≤ x ≤ upperB, where x is an N-bit number,
x\[0\] x\[1\] ... x\[N-1\], with 0 the most significant bit (important!).
The number of variables N should be sufficient to represent the bounds;
otherwise, the bounds are truncated to their N least significant bits.
Two BDDs are built bottom-up for lowerB ≤ x and x ≤ upperB, and they
are finally conjoined.
@sideeffect None
@see Cudd_Xgty
*/
DdNode *
Cudd_bddInterval(
DdManager * dd /**< %DD manager */,
int N /**< number of x variables */,
DdNode ** x /**< array of x variables */,
unsigned int lowerB /**< lower bound */,
unsigned int upperB /**< upper bound */)
{
DdNode *one, *zero;
DdNode *r, *rl, *ru;
int i;
one = DD_ONE(dd);
zero = Cudd_Not(one);
rl = one;
cuddRef(rl);
ru = one;
cuddRef(ru);
/* Loop to build the rest of the BDDs. */
for (i = N-1; i >= 0; i--) {
DdNode *vl, *vu;
vl = Cudd_bddIte(dd, x[i],
lowerB&1 ? rl : one,
lowerB&1 ? zero : rl);
if (vl == NULL) {
Cudd_IterDerefBdd(dd, rl);
Cudd_IterDerefBdd(dd, ru);
return(NULL);
}
cuddRef(vl);
Cudd_IterDerefBdd(dd, rl);
rl = vl;
lowerB >>= 1;
vu = Cudd_bddIte(dd, x[i],
upperB&1 ? ru : zero,
upperB&1 ? one : ru);
if (vu == NULL) {
Cudd_IterDerefBdd(dd, rl);
Cudd_IterDerefBdd(dd, ru);
return(NULL);
}
cuddRef(vu);
Cudd_IterDerefBdd(dd, ru);
ru = vu;
upperB >>= 1;
}
/* Conjoin the two bounds. */
r = Cudd_bddAnd(dd, rl, ru);
if (r == NULL) {
Cudd_IterDerefBdd(dd, rl);
Cudd_IterDerefBdd(dd, ru);
return(NULL);
}
cuddRef(r);
Cudd_IterDerefBdd(dd, rl);
Cudd_IterDerefBdd(dd, ru);
cuddDeref(r);
return(r);
} /* end of Cudd_bddInterval */
/**
@brief Computes the compatible projection of R w.r.t. cube Y.
@details Computes the compatible projection of relation R with
respect to cube Y. For a comparison between Cudd_CProjection and
Cudd_PrioritySelect, see the documentation of the latter.
@return a pointer to the c-projection if successful; NULL otherwise.
@sideeffect None
@see Cudd_PrioritySelect
*/
DdNode *
Cudd_CProjection(
DdManager * dd,
DdNode * R,
DdNode * Y)
{
DdNode *res;
DdNode *support;
if (Cudd_CheckCube(dd,Y) == 0) {
(void) fprintf(dd->err,
"Error: The third argument of Cudd_CProjection should be a cube\n");
dd->errorCode = CUDD_INVALID_ARG;
return(NULL);
}
/* Compute the support of Y, which is used by the abstraction step
** in cuddCProjectionRecur.
*/
support = Cudd_Support(dd,Y);
if (support == NULL) return(NULL);
cuddRef(support);
do {
dd->reordered = 0;
res = cuddCProjectionRecur(dd,R,Y,support);
} while (dd->reordered == 1);
if (res == NULL) {
Cudd_RecursiveDeref(dd,support);
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
dd->timeoutHandler(dd, dd->tohArg);
}
return(NULL);
}
cuddRef(res);
Cudd_RecursiveDeref(dd,support);
cuddDeref(res);
return(res);
} /* end of Cudd_CProjection */
/**
@brief Computes the Hamming distance %ADD.
@details The two vectors xVars and yVars identify the variables that
form the two arguments.
@return an %ADD that gives the Hamming distance between its two
arguments if successful; NULL otherwise.
@sideeffect None
*/
DdNode *
Cudd_addHamming(
DdManager * dd,
DdNode ** xVars,
DdNode ** yVars,
int nVars)
{
DdNode *result,*tempBdd;
DdNode *tempAdd,*temp;
int i;
result = DD_ZERO(dd);
cuddRef(result);
for (i = 0; i < nVars; i++) {
tempBdd = Cudd_bddIte(dd,xVars[i],Cudd_Not(yVars[i]),yVars[i]);
if (tempBdd == NULL) {
Cudd_RecursiveDeref(dd,result);
return(NULL);
}
cuddRef(tempBdd);
tempAdd = Cudd_BddToAdd(dd,tempBdd);
if (tempAdd == NULL) {
Cudd_RecursiveDeref(dd,tempBdd);
Cudd_RecursiveDeref(dd,result);
return(NULL);
}
cuddRef(tempAdd);
Cudd_RecursiveDeref(dd,tempBdd);
temp = Cudd_addApply(dd,Cudd_addPlus,tempAdd,result);
if (temp == NULL) {
Cudd_RecursiveDeref(dd,tempAdd);
Cudd_RecursiveDeref(dd,result);
return(NULL);
}
cuddRef(temp);
Cudd_RecursiveDeref(dd,tempAdd);
Cudd_RecursiveDeref(dd,result);
result = temp;
}
cuddDeref(result);
return(result);
} /* end of Cudd_addHamming */
/**
@brief Returns the minimum Hamming distance between f and minterm.
@details Returns the minimum Hamming distance between the
minterms of a function f and a reference minterm. The function is
given as a %BDD; the minterm is given as an array of integers, one
for each variable in the manager.
@return the minimum distance if it is less than the upper bound; the
upper bound if the minimum distance is at least as large;
CUDD_OUT_OF_MEM in case of failure.
@sideeffect None
@see Cudd_addHamming Cudd_bddClosestCube
*/
int
Cudd_MinHammingDist(
DdManager *dd /**< %DD manager */,
DdNode *f /**< function to examine */,
int *minterm /**< reference minterm */,
int upperBound /**< distance above which an approximate answer is OK */)
{
DdHashTable *table;
CUDD_VALUE_TYPE epsilon;
int res;
table = cuddHashTableInit(dd,1,2);
if (table == NULL) {
return(CUDD_OUT_OF_MEM);
}
epsilon = Cudd_ReadEpsilon(dd);
Cudd_SetEpsilon(dd,(CUDD_VALUE_TYPE)0.0);
res = cuddMinHammingDistRecur(f,minterm,table,upperBound);
cuddHashTableQuit(table);
Cudd_SetEpsilon(dd,epsilon);
return(res);
} /* end of Cudd_MinHammingDist */
/**
@brief Finds a cube of f at minimum Hamming distance from the minterms of g.
@details All the minterms of the cube are at the minimum distance.
If the distance is 0, the cube belongs to the intersection of f and
g.
@return the cube if successful; NULL otherwise.
@sideeffect The distance is returned as a side effect.
@see Cudd_MinHammingDist
*/
DdNode *
Cudd_bddClosestCube(
DdManager *dd,
DdNode * f,
DdNode *g,
int *distance)
{
DdNode *res, *acube = NULL;
CUDD_VALUE_TYPE rdist = DD_PLUS_INF_VAL;
CUDD_VALUE_TYPE epsilon = Cudd_ReadEpsilon(dd);
do {
/* Compute the cube and distance as a single ADD. */
Cudd_SetEpsilon(dd,(CUDD_VALUE_TYPE)0.0);
dd->reordered = 0;
res = cuddBddClosestCube(dd,f,g,CUDD_CONST_INDEX + 1.0);
Cudd_SetEpsilon(dd,epsilon);
if (dd->reordered == 0) {
if (res == NULL) {
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
dd->timeoutHandler(dd, dd->tohArg);
}
return(NULL);
}
cuddRef(res);
/* Unpack distance and cube. */
acube = separateCube(dd, res, &rdist);
Cudd_RecursiveDeref(dd, res);
}
} while (dd->reordered == 1);
if (acube == NULL) {
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
dd->timeoutHandler(dd, dd->tohArg);
}
return(NULL);
}
cuddRef(acube);
/* Convert cube from ADD to BDD. */
do {
dd->reordered = 0;
res = cuddAddBddDoPattern(dd, acube);
} while (dd->reordered == 1);
if (res == NULL) {
Cudd_RecursiveDeref(dd, acube);
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
dd->timeoutHandler(dd, dd->tohArg);
}
return(NULL);
}
cuddRef(res);
Cudd_RecursiveDeref(dd, acube);
*distance = (int) rdist;
cuddDeref(res);
return(res);
} /* end of Cudd_bddClosestCube */
/*---------------------------------------------------------------------------*/
/* Definition of internal functions */
/*---------------------------------------------------------------------------*/
/**
@brief Performs the recursive step of Cudd_CProjection.
@return the projection if successful; NULL otherwise.
@sideeffect None
@see Cudd_CProjection
*/
DdNode *
cuddCProjectionRecur(
DdManager * dd,
DdNode * R,
DdNode * Y,
DdNode * Ysupp)
{
DdNode *res, *res1, *res2, *resA;
DdNode *r, *y, *RT, *RE, *YT, *YE, *Yrest, *Ra, *Ran, *Gamma, *Alpha;
int topR, topY, top;
unsigned int index;
DdNode *one = DD_ONE(dd);
statLine(dd);
if (Y == one) return(R);
#ifdef DD_DEBUG
assert(!Cudd_IsConstantInt(Y));
#endif
if (R == Cudd_Not(one)) return(R);
res = cuddCacheLookup2(dd, Cudd_CProjection, R, Y);
if (res != NULL) return(res);
checkWhetherToGiveUp(dd);
r = Cudd_Regular(R);
topR = cuddI(dd,r->index);
y = Cudd_Regular(Y);
topY = cuddI(dd,y->index);
top = ddMin(topR, topY);
/* Compute the cofactors of R */
index = r->index;
if (topR == top) {
RT = cuddT(r);
RE = cuddE(r);
if (r != R) {
RT = Cudd_Not(RT); RE = Cudd_Not(RE);
}
} else {
RT = RE = R;
}
if (topY > top) {
/* Y does not depend on the current top variable.
** We just need to compute the results on the two cofactors of R
** and make them the children of a node labeled r->index.
*/
res1 = cuddCProjectionRecur(dd,RT,Y,Ysupp);
if (res1 == NULL) return(NULL);
cuddRef(res1);
res2 = cuddCProjectionRecur(dd,RE,Y,Ysupp);
if (res2 == NULL) {
Cudd_RecursiveDeref(dd,res1);
return(NULL);
}
cuddRef(res2);
res = cuddBddIteRecur(dd, dd->vars[index], res1, res2);
if (res == NULL) {
Cudd_RecursiveDeref(dd,res1);
Cudd_RecursiveDeref(dd,res2);
return(NULL);
}
/* If we have reached this point, res1 and res2 are now
** incorporated in res. cuddDeref is therefore sufficient.
*/
cuddDeref(res1);
cuddDeref(res2);
} else {
/* Compute the cofactors of Y */
index = y->index;
YT = cuddT(y);
YE = cuddE(y);
if (y != Y) {
YT = Cudd_Not(YT); YE = Cudd_Not(YE);
}
if (YT == Cudd_Not(one)) {
Alpha = Cudd_Not(dd->vars[index]);
Yrest = YE;
Ra = RE;
Ran = RT;
} else {
Alpha = dd->vars[index];
Yrest = YT;
Ra = RT;
Ran = RE;
}
Gamma = cuddBddExistAbstractRecur(dd,Ra,cuddT(Ysupp));
if (Gamma == NULL) return(NULL);
if (Gamma == one) {
res1 = cuddCProjectionRecur(dd,Ra,Yrest,cuddT(Ysupp));
if (res1 == NULL) return(NULL);
cuddRef(res1);
res = cuddBddAndRecur(dd, Alpha, res1);
if (res == NULL) {
Cudd_RecursiveDeref(dd,res1);
return(NULL);
}
cuddDeref(res1);
} else if (Gamma == Cudd_Not(one)) {
res1 = cuddCProjectionRecur(dd,Ran,Yrest,cuddT(Ysupp));
if (res1 == NULL) return(NULL);
cuddRef(res1);
res = cuddBddAndRecur(dd, Cudd_Not(Alpha), res1);
if (res == NULL) {
Cudd_RecursiveDeref(dd,res1);
return(NULL);
}
cuddDeref(res1);
} else {
cuddRef(Gamma);
resA = cuddCProjectionRecur(dd,Ran,Yrest,cuddT(Ysupp));
if (resA == NULL) {
Cudd_RecursiveDeref(dd,Gamma);
return(NULL);
}
cuddRef(resA);
res2 = cuddBddAndRecur(dd, Cudd_Not(Gamma), resA);
if (res2 == NULL) {
Cudd_RecursiveDeref(dd,Gamma);
Cudd_RecursiveDeref(dd,resA);
return(NULL);
}
cuddRef(res2);
Cudd_RecursiveDeref(dd,Gamma);
Cudd_RecursiveDeref(dd,resA);
res1 = cuddCProjectionRecur(dd,Ra,Yrest,cuddT(Ysupp));
if (res1 == NULL) {
Cudd_RecursiveDeref(dd,res2);
return(NULL);
}
cuddRef(res1);
res = cuddBddIteRecur(dd, Alpha, res1, res2);
if (res == NULL) {
Cudd_RecursiveDeref(dd,res1);
Cudd_RecursiveDeref(dd,res2);
return(NULL);
}
cuddDeref(res1);
cuddDeref(res2);
}
}
cuddCacheInsert2(dd,Cudd_CProjection,R,Y,res);
return(res);
} /* end of cuddCProjectionRecur */
/**
@brief Performs the recursive step of Cudd_bddClosestCube.
@details@parblock
The procedure uses a four-way recursion to examine all four combinations
of cofactors of f
and g
according to the
following formula.
H(f,g) = min(H(ft,gt), H(fe,ge), H(ft,ge)+1, H(fe,gt)+1)
Bounding is based on the following observations.
- If we already found two points at distance 0, there is no point in
continuing. Furthermore,
- If F == not(G) then the best we can hope for is a minimum distance
of 1. If we have already found two points at distance 1, there is
no point in continuing. (Indeed, H(F,G) == 1 in this case. We
have to continue, though, to find the cube.)
The variable bound
is set at the largest value of the distance
that we are still interested in. Therefore, we desist when
(bound == -1) and (F != not(G)) or (bound == 0) and (F == not(G)).
If we were maximally aggressive in using the bound, we would always
set the bound to the minimum distance seen thus far minus one. That
is, we would maintain the invariant
bound < minD,
except at the very beginning, when we have no value for
minD
.
However, we do not use bound < minD
when examining the
two negative cofactors, because we try to find a large cube at
minimum distance. To do so, we try to find a cube in the negative
cofactors at the same or smaller distance from the cube found in the
positive cofactors.
When we compute H(ft,ge)
and H(fe,gt)
we
know that we are going to add 1 to the result of the recursive call
to account for the difference in the splitting variable. Therefore,
we decrease the bound correspondingly.
Another important observation concerns the need of examining all
four pairs of cofators only when both f
and
g
depend on the top variable.
Suppose gt == ge == g
. (That is, g
does
not depend on the top variable.) Then
H(f,g) = min(H(ft,g), H(fe,g), H(ft,g)+1, H(fe,g)+1)
= min(H(ft,g), H(fe,g)) .
Therefore, under these circumstances, we skip the two "cross" cases.
An interesting feature of this function is the scheme used for
caching the results in the global computed table. Since we have a
cube and a distance, we combine them to form an %ADD. The
combination replaces the zero child of the top node of the cube with
the negative of the distance. (The use of the negative is to avoid
ambiguity with 1.) The degenerate cases (zero and one) are treated
specially because the distance is known (0 for one, and infinity for
zero).
@endparblock
@return the cube if succesful; NULL otherwise.
@sideeffect None
@see Cudd_bddClosestCube
*/
DdNode *
cuddBddClosestCube(
DdManager *dd,
DdNode *f,
DdNode *g,
CUDD_VALUE_TYPE bound)
{
DdNode *res, *F, *G, *ft, *fe, *gt, *ge, *tt, *ee;
DdNode *ctt, *cee, *cte, *cet;
CUDD_VALUE_TYPE minD, dtt, dee, dte, det;
DdNode *one = DD_ONE(dd);
DdNode *lzero = Cudd_Not(one);
DdNode *azero = DD_ZERO(dd);
int topf, topg;
unsigned int index;
statLine(dd);
if (bound < (f == Cudd_Not(g))) return(azero);
/* Terminal cases. */
if (g == lzero || f == lzero) return(azero);
if (f == one && g == one) return(one);
/* Check cache. */
F = Cudd_Regular(f);
G = Cudd_Regular(g);
if (F->ref != 1 || G->ref != 1) {
res = cuddCacheLookup2(dd,(DD_CTFP) Cudd_bddClosestCube, f, g);
if (res != NULL) return(res);
}
checkWhetherToGiveUp(dd);
topf = cuddI(dd,F->index);
topg = cuddI(dd,G->index);
/* Compute cofactors. */
if (topf <= topg) {
index = F->index;
ft = cuddT(F);
fe = cuddE(F);
if (Cudd_IsComplement(f)) {
ft = Cudd_Not(ft);
fe = Cudd_Not(fe);
}
} else {
index = G->index;
ft = fe = f;
}
if (topg <= topf) {
gt = cuddT(G);
ge = cuddE(G);
if (Cudd_IsComplement(g)) {
gt = Cudd_Not(gt);
ge = Cudd_Not(ge);
}
} else {
gt = ge = g;
}
tt = cuddBddClosestCube(dd,ft,gt,bound);
if (tt == NULL) return(NULL);
cuddRef(tt);
ctt = separateCube(dd,tt,&dtt);
if (ctt == NULL) {
Cudd_RecursiveDeref(dd, tt);
return(NULL);
}
cuddRef(ctt);
Cudd_RecursiveDeref(dd, tt);
minD = dtt;
bound = ddMin(bound,minD);
ee = cuddBddClosestCube(dd,fe,ge,bound);
if (ee == NULL) {
Cudd_RecursiveDeref(dd, ctt);
return(NULL);
}
cuddRef(ee);
cee = separateCube(dd,ee,&dee);
if (cee == NULL) {
Cudd_RecursiveDeref(dd, ctt);
Cudd_RecursiveDeref(dd, ee);
return(NULL);
}
cuddRef(cee);
Cudd_RecursiveDeref(dd, ee);
minD = ddMin(dtt, dee);
if (minD <= CUDD_CONST_INDEX) bound = ddMin(bound,minD-1);
if (minD > 0 && topf == topg) {
DdNode *te = cuddBddClosestCube(dd,ft,ge,bound-1);
if (te == NULL) {
Cudd_RecursiveDeref(dd, ctt);
Cudd_RecursiveDeref(dd, cee);
return(NULL);
}
cuddRef(te);
cte = separateCube(dd,te,&dte);
if (cte == NULL) {
Cudd_RecursiveDeref(dd, ctt);
Cudd_RecursiveDeref(dd, cee);
Cudd_RecursiveDeref(dd, te);
return(NULL);
}
cuddRef(cte);
Cudd_RecursiveDeref(dd, te);
dte += 1.0;
minD = ddMin(minD, dte);
} else {
cte = azero;
cuddRef(cte);
dte = CUDD_CONST_INDEX + 1.0;
}
if (minD <= CUDD_CONST_INDEX) bound = ddMin(bound,minD-1);
if (minD > 0 && topf == topg) {
DdNode *et = cuddBddClosestCube(dd,fe,gt,bound-1);
if (et == NULL) {
Cudd_RecursiveDeref(dd, ctt);
Cudd_RecursiveDeref(dd, cee);
Cudd_RecursiveDeref(dd, cte);
return(NULL);
}
cuddRef(et);
cet = separateCube(dd,et,&det);
if (cet == NULL) {
Cudd_RecursiveDeref(dd, ctt);
Cudd_RecursiveDeref(dd, cee);
Cudd_RecursiveDeref(dd, cte);
Cudd_RecursiveDeref(dd, et);
return(NULL);
}
cuddRef(cet);
Cudd_RecursiveDeref(dd, et);
det += 1.0;
minD = ddMin(minD, det);
} else {
cet = azero;
cuddRef(cet);
det = CUDD_CONST_INDEX + 1.0;
}
if (minD == dtt) {
if (dtt == dee && ctt == cee) {
res = createResult(dd,CUDD_CONST_INDEX,1,ctt,dtt);
} else {
res = createResult(dd,index,1,ctt,dtt);
}
} else if (minD == dee) {
res = createResult(dd,index,0,cee,dee);
} else if (minD == dte) {
#ifdef DD_DEBUG
assert(topf == topg);
#endif
res = createResult(dd,index,1,cte,dte);
} else {
#ifdef DD_DEBUG
assert(topf == topg);
#endif
res = createResult(dd,index,0,cet,det);
}
if (res == NULL) {
Cudd_RecursiveDeref(dd, ctt);
Cudd_RecursiveDeref(dd, cee);
Cudd_RecursiveDeref(dd, cte);
Cudd_RecursiveDeref(dd, cet);
return(NULL);
}
cuddRef(res);
Cudd_RecursiveDeref(dd, ctt);
Cudd_RecursiveDeref(dd, cee);
Cudd_RecursiveDeref(dd, cte);
Cudd_RecursiveDeref(dd, cet);
/* Only cache results that are different from azero to avoid
** storing results that depend on the value of the bound. */
if ((F->ref != 1 || G->ref != 1) && res != azero)
cuddCacheInsert2(dd,(DD_CTFP) Cudd_bddClosestCube, f, g, res);
cuddDeref(res);
return(res);
} /* end of cuddBddClosestCube */
/*---------------------------------------------------------------------------*/
/* Definition of static functions */
/*---------------------------------------------------------------------------*/
/**
@brief Performs the recursive step of Cudd_MinHammingDist.
@details It is based on the following identity. Let H(f) be the
minimum Hamming distance of the minterms of f from the reference
minterm. Then:
H(f) = min(H(f0)+h0,H(f1)+h1)
where f0 and f1 are the two cofactors of f with respect to its top
variable; h0 is 1 if the minterm assigns 1 to the top variable of f;
h1 is 1 if the minterm assigns 0 to the top variable of f.
The upper bound on the distance is used to bound the depth of the
recursion.
@return the minimum distance unless it exceeds the upper bound or
computation fails.
@sideeffect None
@see Cudd_MinHammingDist
*/
static int
cuddMinHammingDistRecur(
DdNode * f,
int *minterm,
DdHashTable * table,
int upperBound)
{
DdNode *F, *Ft, *Fe;
double h, hT, hE;
DdNode *zero, *res;
DdManager *dd = table->manager;
statLine(dd);
if (upperBound == 0) return(0);
F = Cudd_Regular(f);
if (cuddIsConstant(F)) {
zero = Cudd_Not(DD_ONE(dd));
if (f == dd->background || f == zero) {
return(upperBound);
} else {
return(0);
}
}
if ((res = cuddHashTableLookup1(table,f)) != NULL) {
h = cuddV(res);
if (res->ref == 0) {
dd->dead++;
dd->constants.dead++;
}
return((int) h);
}
Ft = cuddT(F); Fe = cuddE(F);
if (Cudd_IsComplement(f)) {
Ft = Cudd_Not(Ft); Fe = Cudd_Not(Fe);
}
if (minterm[F->index] == 0) {
DdNode *temp = Ft;
Ft = Fe; Fe = temp;
}
hT = cuddMinHammingDistRecur(Ft,minterm,table,upperBound);
if (hT == CUDD_OUT_OF_MEM) return(CUDD_OUT_OF_MEM);
if (hT == 0) {
hE = upperBound;
} else {
hE = cuddMinHammingDistRecur(Fe,minterm,table,upperBound - 1);
if (hE == CUDD_OUT_OF_MEM) return(CUDD_OUT_OF_MEM);
}
h = ddMin(hT, hE + 1);
if (F->ref != 1) {
ptrint fanout = (ptrint) F->ref;
cuddSatDec(fanout);
res = cuddUniqueConst(dd, (CUDD_VALUE_TYPE) h);
if (!cuddHashTableInsert1(table,f,res,fanout)) {
cuddRef(res); Cudd_RecursiveDeref(dd, res);
return(CUDD_OUT_OF_MEM);
}
}
return((int) h);
} /* end of cuddMinHammingDistRecur */
/**
@brief Separates cube from distance.
@return the cube if successful; NULL otherwise.
@sideeffect The distance is returned as a side effect.
@see cuddBddClosestCube createResult
*/
static DdNode *
separateCube(
DdManager *dd,
DdNode *f,
CUDD_VALUE_TYPE *distance)
{
DdNode *cube, *t;
/* One and zero are special cases because the distance is implied. */
if (Cudd_IsConstantInt(f)) {
*distance = (f == DD_ONE(dd)) ? 0.0 :
(1.0 + (CUDD_VALUE_TYPE) CUDD_CONST_INDEX);
return(f);
}
/* Find out which branch points to the distance and replace the top
** node with one pointing to zero instead. */
t = cuddT(f);
if (Cudd_IsConstantInt(t) && cuddV(t) <= 0) {
#ifdef DD_DEBUG
assert(!Cudd_IsConstantInt(cuddE(f)) || cuddE(f) == DD_ONE(dd));
#endif
*distance = -cuddV(t);
cube = cuddUniqueInter(dd, f->index, DD_ZERO(dd), cuddE(f));
} else {
#ifdef DD_DEBUG
assert(!Cudd_IsConstantInt(t) || t == DD_ONE(dd));
#endif
*distance = -cuddV(cuddE(f));
cube = cuddUniqueInter(dd, f->index, t, DD_ZERO(dd));
}
return(cube);
} /* end of separateCube */
/**
@brief Builds a result for cache storage.
@return a pointer to the resulting %ADD if successful; NULL
otherwise.
@sideeffect None
@see cuddBddClosestCube separateCube
*/
static DdNode *
createResult(
DdManager *dd,
unsigned int index,
unsigned int phase,
DdNode *cube,
CUDD_VALUE_TYPE distance)
{
DdNode *res, *constant;
/* Special case. The cube is either one or zero, and we do not
** add any variables. Hence, the result is also one or zero,
** and the distance remains implied by the value of the constant. */
if (index == CUDD_CONST_INDEX && Cudd_IsConstantInt(cube)) return(cube);
constant = cuddUniqueConst(dd,-distance);
if (constant == NULL) return(NULL);
cuddRef(constant);
if (index == CUDD_CONST_INDEX) {
/* Replace the top node. */
if (cuddT(cube) == DD_ZERO(dd)) {
res = cuddUniqueInter(dd,cube->index,constant,cuddE(cube));
} else {
res = cuddUniqueInter(dd,cube->index,cuddT(cube),constant);
}
} else {
/* Add a new top node. */
#ifdef DD_DEBUG
assert(cuddI(dd,index) < cuddI(dd,cube->index));
#endif
if (phase) {
res = cuddUniqueInter(dd,index,cube,constant);
} else {
res = cuddUniqueInter(dd,index,constant,cube);
}
}
if (res == NULL) {
Cudd_RecursiveDeref(dd, constant);
return(NULL);
}
cuddDeref(constant); /* safe because constant is part of res */
return(res);
} /* end of createResult */