// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This provides interface PrimeTable that determines whether a number is a // prime and determines a next prime number. This interface is used // in Google Test samples demonstrating use of parameterized tests. #ifndef GOOGLETEST_SAMPLES_PRIME_TABLES_H_ #define GOOGLETEST_SAMPLES_PRIME_TABLES_H_ #include <algorithm> // The prime table interface. class PrimeTable { public: virtual ~PrimeTable() {} // Returns true if and only if n is a prime number. virtual bool IsPrime(int n) const = 0; // Returns the smallest prime number greater than p; or returns -1 // if the next prime is beyond the capacity of the table. virtual int GetNextPrime(int p) const = 0; }; // Implementation #1 calculates the primes on-the-fly. class OnTheFlyPrimeTable : public PrimeTable { public: bool IsPrime(int n) const override { if (n <= 1) return false; for (int i = 2; i*i <= n; i++) { // n is divisible by an integer other than 1 and itself. if ((n % i) == 0) return false; } return true; } int GetNextPrime(int p) const override { if (p < 0) return -1; for (int n = p + 1;; n++) { if (IsPrime(n)) return n; } } }; // Implementation #2 pre-calculates the primes and stores the result // in an array. class PreCalculatedPrimeTable : public PrimeTable { public: // 'max' specifies the maximum number the prime table holds. explicit PreCalculatedPrimeTable(int max) : is_prime_size_(max + 1), is_prime_(new bool[max + 1]) { CalculatePrimesUpTo(max); } ~PreCalculatedPrimeTable() override { delete[] is_prime_; } bool IsPrime(int n) const override { return 0 <= n && n < is_prime_size_ && is_prime_[n]; } int GetNextPrime(int p) const override { for (int n = p + 1; n < is_prime_size_; n++) { if (is_prime_[n]) return n; } return -1; } private: void CalculatePrimesUpTo(int max) { ::std::fill(is_prime_, is_prime_ + is_prime_size_, true); is_prime_[0] = is_prime_[1] = false; // Checks every candidate for prime number (we know that 2 is the only even // prime). for (int i = 2; i*i <= max; i += i%2+1) { if (!is_prime_[i]) continue; // Marks all multiples of i (except i itself) as non-prime. // We are starting here from i-th multiplier, because all smaller // complex numbers were already marked. for (int j = i*i; j <= max; j += i) { is_prime_[j] = false; } } } const int is_prime_size_; bool* const is_prime_; // Disables compiler warning "assignment operator could not be generated." void operator=(const PreCalculatedPrimeTable& rhs); }; #endif // GOOGLETEST_SAMPLES_PRIME_TABLES_H_