|
|
/* maxflow.c */
/* Written by Andrew Makhorin <mao@gnu.org>, October 2015. */
#include <math.h>
#include <glpk.h>
#include "maxflow.h"
#include "misc.h"
/***********************************************************************
* NAME * * max_flow - find max flow in undirected capacitated network * * SYNOPSIS * * #include "maxflow.h" * int max_flow(int nn, int ne, const int beg[], const int end[], * const int cap[], int s, int t, int x[]); * * DESCRIPTION * * This routine finds max flow in a given undirected network. * * The undirected capacitated network is specified by the parameters * nn, ne, beg, end, and cap. The parameter nn specifies the number of * vertices (nodes), nn >= 2, and the parameter ne specifies the number * of edges, ne >= 0. The network edges are specified by triplets * (beg[k], end[k], cap[k]) for k = 1, ..., ne, where beg[k] < end[k] * are numbers of the first and second nodes of k-th edge, and * cap[k] > 0 is a capacity of k-th edge. Loops and multiple edges are * not allowed. * * The parameter s is the number of a source node, and the parameter t * is the number of a sink node, s != t. * * On exit the routine computes elementary flows thru edges and stores * their values to locations x[1], ..., x[ne]. Positive value of x[k] * means that the elementary flow goes from node beg[k] to node end[k], * and negative value means that the flow goes in opposite direction. * * RETURNS * * The routine returns the total maximum flow through the network. */
int max_flow(int nn, int ne, const int beg[/*1+ne*/], const int end[/*1+ne*/], const int cap[/*1+ne*/], int s, int t, int x[/*1+ne*/]) { int k; /* sanity checks */ xassert(nn >= 2); xassert(ne >= 0); xassert(1 <= s && s <= nn); xassert(1 <= t && t <= nn); xassert(s != t); for (k = 1; k <= ne; k++) { xassert(1 <= beg[k] && beg[k] < end[k] && end[k] <= nn); xassert(cap[k] > 0); } /* find max flow */ return max_flow_lp(nn, ne, beg, end, cap, s, t, x); }
/***********************************************************************
* NAME * * max_flow_lp - find max flow with simplex method * * SYNOPSIS * * #include "maxflow.h" * int max_flow_lp(int nn, int ne, const int beg[], const int end[], * const int cap[], int s, int t, int x[]); * * DESCRIPTION * * This routine finds max flow in a given undirected network with the * simplex method. * * Parameters of this routine have the same meaning as for the routine * max_flow (see above). * * RETURNS * * The routine returns the total maximum flow through the network. */
int max_flow_lp(int nn, int ne, const int beg[/*1+ne*/], const int end[/*1+ne*/], const int cap[/*1+ne*/], int s, int t, int x[/*1+ne*/]) { glp_prob *lp; glp_smcp smcp; int i, k, nz, flow, *rn, *cn; double temp, *aa; /* create LP problem instance */ lp = glp_create_prob(); /* create LP rows; i-th row is the conservation condition of the
* flow at i-th node, i = 1, ..., nn */ glp_add_rows(lp, nn); for (i = 1; i <= nn; i++) glp_set_row_bnds(lp, i, GLP_FX, 0.0, 0.0); /* create LP columns; k-th column is the elementary flow thru
* k-th edge, k = 1, ..., ne; the last column with the number * ne+1 is the total flow through the network, which goes along * a dummy feedback edge from the sink to the source */ glp_add_cols(lp, ne+1); for (k = 1; k <= ne; k++) { xassert(cap[k] > 0); glp_set_col_bnds(lp, k, GLP_DB, -cap[k], +cap[k]); } glp_set_col_bnds(lp, ne+1, GLP_FR, 0.0, 0.0); /* build the constraint matrix; structurally this matrix is the
* incidence matrix of the network, so each its column (including * the last column for the dummy edge) has exactly two non-zero * entries */ rn = xalloc(1+2*(ne+1), sizeof(int)); cn = xalloc(1+2*(ne+1), sizeof(int)); aa = xalloc(1+2*(ne+1), sizeof(double)); nz = 0; for (k = 1; k <= ne; k++) { /* x[k] > 0 means the elementary flow thru k-th edge goes from
* node beg[k] to node end[k] */ nz++, rn[nz] = beg[k], cn[nz] = k, aa[nz] = -1.0; nz++, rn[nz] = end[k], cn[nz] = k, aa[nz] = +1.0; } /* total flow thru the network goes from the sink to the source
* along the dummy feedback edge */ nz++, rn[nz] = t, cn[nz] = ne+1, aa[nz] = -1.0; nz++, rn[nz] = s, cn[nz] = ne+1, aa[nz] = +1.0; /* check the number of non-zero entries */ xassert(nz == 2*(ne+1)); /* load the constraint matrix into the LP problem object */ glp_load_matrix(lp, nz, rn, cn, aa); xfree(rn); xfree(cn); xfree(aa); /* objective function is the total flow through the network to
* be maximized */ glp_set_obj_dir(lp, GLP_MAX); glp_set_obj_coef(lp, ne + 1, 1.0); /* solve LP instance with the (primal) simplex method */ glp_term_out(0); glp_adv_basis(lp, 0); glp_term_out(1); glp_init_smcp(&smcp); smcp.msg_lev = GLP_MSG_ON; smcp.out_dly = 5000; xassert(glp_simplex(lp, &smcp) == 0); xassert(glp_get_status(lp) == GLP_OPT); /* obtain optimal elementary flows thru edges of the network */ /* (note that the constraint matrix is unimodular and the data
* are integral, so all elementary flows in basic solution should * also be integral) */ for (k = 1; k <= ne; k++) { temp = glp_get_col_prim(lp, k); x[k] = (int)floor(temp + .5); xassert(fabs(x[k] - temp) <= 1e-6); } /* obtain the maximum flow thru the original network which is the
* flow thru the dummy feedback edge */ temp = glp_get_col_prim(lp, ne+1); flow = (int)floor(temp + .5); xassert(fabs(flow - temp) <= 1e-6); /* delete LP problem instance */ glp_delete_prob(lp); /* return to the calling program */ return flow; }
/* eof */
|