|
|
/* Rectifiable polyomino tilings generator */
/* Written and converted to GNU MathProg by NASZVADI, Peter, 2007-2017 <vuk@cs.elte.hu> */
/* This model searches for a maximal packing of a given polyomino composed of unit squares in a given rectangle. In a feasible packing, a placed polyomino and its intersection of a unit square's inner part in the rectangle must be the square or empty. If there exists a packing that covers totally the rectangle, then the polyomino is called "rectifiable"
Summary: Decides if an Im * Jm rectangle could be tiled with given pattern and prints a (sub)optimal solution if found
Generated magic numbers are implicit tables, check them:
# for magic in 3248 688 1660 3260 do printf "Magic % 5d:" "$magic" for e in 0 1 2 3 4 5 6 7 do printf "% 3d" "$((-1 + ((magic / (3**e)) % 3)))" done echo done Magic 3248: 1 1 -1 -1 0 0 0 0 Magic 688: 0 0 0 0 1 1 -1 -1 Magic 1660: 0 0 0 0 1 -1 1 -1 Magic 3260: 1 -1 1 -1 0 0 0 0 # */
param Im, default 3; /* vertical edge length of the box */
param Jm, default 3; /* horizontal edge length of the box */
set S, default {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2)}; /* P-heptomino is the default shape. More info on this heptomino: http://www.cflmath.com/Polyomino/7omino4_rect.html */
set I := 1..Im; /* rows of rectangle */
set J := 1..Jm; /* columns of rectangle */
set IJ := I cross J; /* the rectangle itself */
set E := 0..7; /* helper set to allow iterating on all transformations of the S shape */
set Shifts := setof{(i, j, e) in IJ cross E: setof{(x, y) in S} ((x * (-1 + floor(3248 / 3^e) mod 3)) + (y * (-1 + floor(688 / 3^e) mod 3)) + i, (x * (-1 + floor(1660 / 3^e) mod 3)) + (y * (-1 + floor(3260 / 3^e) mod 3)) + j) within IJ}(i, j, e); /* all shifted, flipped, rotated, mirrored mappings of polyomino that contained by the rectangle */
var cell{IJ}, binary; /* booleans denoting if a cell is covered in the rectangle */
var tile{Shifts}, binary; /* booleans denoting usage of a shift */
var objvalue;
s.t. covers{(i, j) in IJ}: sum{(k, l, e, a, b) in Shifts cross S: i = k + a * (-1 + floor(3248 / 3^e) mod 3) + b * (-1 + floor(688 / 3^e) mod 3) and j = l + a * (-1 + floor(1660 / 3^e) mod 3) + b * (-1 + floor(3260 / 3^e) mod 3) }tile[k, l, e] = cell[i, j];
s.t. objeval: sum{(i, j) in IJ}cell[i, j] - objvalue = 0;
maximize obj: objvalue;
solve;
printf '\nCovered cells/all cells = %d/%d\n\n', objvalue.val, Im * Jm; printf '\nA tiling:\n\n'; for{i in I}{ for{j in J}{ printf '%s', if cell[i, j].val then '' else ' *** '; for{(k, l, e, a, b) in Shifts cross S: cell[i, j].val and i = k + a * (-1 + floor(3248 / 3^e) mod 3) + b * (-1 + floor(688 / 3^e) mod 3) and j = l + a * (-1 + floor(1660 / 3^e) mod 3) + b * (-1 + floor(3260 / 3^e) mod 3) and tile[k, l, e].val }{ printf '% 5d', (k * Jm + l) * 8 + e; } } printf '\n'; } printf '\n';
data;
param Im := 14; /* here can be set rectangle's one side */
param Jm := 14; /* here can be set rectangle's other side */
set S := (0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(0,2); /* here you can specify arbitrary polyomino */
end;
|