|
|
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// The MATCHER* family of macros can be used in a namespace scope to
// define custom matchers easily.
//
// Basic Usage
// ===========
//
// The syntax
//
// MATCHER(name, description_string) { statements; }
//
// defines a matcher with the given name that executes the statements,
// which must return a bool to indicate if the match succeeds. Inside
// the statements, you can refer to the value being matched by 'arg',
// and refer to its type by 'arg_type'.
//
// The description string documents what the matcher does, and is used
// to generate the failure message when the match fails. Since a
// MATCHER() is usually defined in a header file shared by multiple
// C++ source files, we require the description to be a C-string
// literal to avoid possible side effects. It can be empty, in which
// case we'll use the sequence of words in the matcher name as the
// description.
//
// For example:
//
// MATCHER(IsEven, "") { return (arg % 2) == 0; }
//
// allows you to write
//
// // Expects mock_foo.Bar(n) to be called where n is even.
// EXPECT_CALL(mock_foo, Bar(IsEven()));
//
// or,
//
// // Verifies that the value of some_expression is even.
// EXPECT_THAT(some_expression, IsEven());
//
// If the above assertion fails, it will print something like:
//
// Value of: some_expression
// Expected: is even
// Actual: 7
//
// where the description "is even" is automatically calculated from the
// matcher name IsEven.
//
// Argument Type
// =============
//
// Note that the type of the value being matched (arg_type) is
// determined by the context in which you use the matcher and is
// supplied to you by the compiler, so you don't need to worry about
// declaring it (nor can you). This allows the matcher to be
// polymorphic. For example, IsEven() can be used to match any type
// where the value of "(arg % 2) == 0" can be implicitly converted to
// a bool. In the "Bar(IsEven())" example above, if method Bar()
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
// 'arg_type' will be unsigned long; and so on.
//
// Parameterizing Matchers
// =======================
//
// Sometimes you'll want to parameterize the matcher. For that you
// can use another macro:
//
// MATCHER_P(name, param_name, description_string) { statements; }
//
// For example:
//
// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
//
// will allow you to write:
//
// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
//
// which may lead to this message (assuming n is 10):
//
// Value of: Blah("a")
// Expected: has absolute value 10
// Actual: -9
//
// Note that both the matcher description and its parameter are
// printed, making the message human-friendly.
//
// In the matcher definition body, you can write 'foo_type' to
// reference the type of a parameter named 'foo'. For example, in the
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
// 'value_type' to refer to the type of 'value'.
//
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
// support multi-parameter matchers.
//
// Describing Parameterized Matchers
// =================================
//
// The last argument to MATCHER*() is a string-typed expression. The
// expression can reference all of the matcher's parameters and a
// special bool-typed variable named 'negation'. When 'negation' is
// false, the expression should evaluate to the matcher's description;
// otherwise it should evaluate to the description of the negation of
// the matcher. For example,
//
// using testing::PrintToString;
//
// MATCHER_P2(InClosedRange, low, hi,
// std::string(negation ? "is not" : "is") + " in range [" +
// PrintToString(low) + ", " + PrintToString(hi) + "]") {
// return low <= arg && arg <= hi;
// }
// ...
// EXPECT_THAT(3, InClosedRange(4, 6));
// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
// Expected: is in range [4, 6]
// ...
// Expected: is not in range [2, 4]
//
// If you specify "" as the description, the failure message will
// contain the sequence of words in the matcher name followed by the
// parameter values printed as a tuple. For example,
//
// MATCHER_P2(InClosedRange, low, hi, "") { ... }
// ...
// EXPECT_THAT(3, InClosedRange(4, 6));
// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
// Expected: in closed range (4, 6)
// ...
// Expected: not (in closed range (2, 4))
//
// Types of Matcher Parameters
// ===========================
//
// For the purpose of typing, you can view
//
// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooMatcherPk<p1_type, ..., pk_type>
// Foo(p1_type p1, ..., pk_type pk) { ... }
//
// When you write Foo(v1, ..., vk), the compiler infers the types of
// the parameters v1, ..., and vk for you. If you are not happy with
// the result of the type inference, you can specify the types by
// explicitly instantiating the template, as in Foo<long, bool>(5,
// false). As said earlier, you don't get to (or need to) specify
// 'arg_type' as that's determined by the context in which the matcher
// is used. You can assign the result of expression Foo(p1, ..., pk)
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
// can be useful when composing matchers.
//
// While you can instantiate a matcher template with reference types,
// passing the parameters by pointer usually makes your code more
// readable. If, however, you still want to pass a parameter by
// reference, be aware that in the failure message generated by the
// matcher you will see the value of the referenced object but not its
// address.
//
// Explaining Match Results
// ========================
//
// Sometimes the matcher description alone isn't enough to explain why
// the match has failed or succeeded. For example, when expecting a
// long string, it can be very helpful to also print the diff between
// the expected string and the actual one. To achieve that, you can
// optionally stream additional information to a special variable
// named result_listener, whose type is a pointer to class
// MatchResultListener:
//
// MATCHER_P(EqualsLongString, str, "") {
// if (arg == str) return true;
//
// *result_listener << "the difference: "
/// << DiffStrings(str, arg);
// return false;
// }
//
// Overloading Matchers
// ====================
//
// You can overload matchers with different numbers of parameters:
//
// MATCHER_P(Blah, a, description_string1) { ... }
// MATCHER_P2(Blah, a, b, description_string2) { ... }
//
// Caveats
// =======
//
// When defining a new matcher, you should also consider implementing
// MatcherInterface or using MakePolymorphicMatcher(). These
// approaches require more work than the MATCHER* macros, but also
// give you more control on the types of the value being matched and
// the matcher parameters, which may leads to better compiler error
// messages when the matcher is used wrong. They also allow
// overloading matchers based on parameter types (as opposed to just
// based on the number of parameters).
//
// MATCHER*() can only be used in a namespace scope as templates cannot be
// declared inside of a local class.
//
// More Information
// ================
//
// To learn more about using these macros, please search for 'MATCHER'
// on
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
//
// This file also implements some commonly used argument matchers. More
// matchers can be defined by the user implementing the
// MatcherInterface<T> interface if necessary.
//
// See googletest/include/gtest/gtest-matchers.h for the definition of class
// Matcher, class MatcherInterface, and others.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#include <algorithm>
#include <cmath>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <ostream> // NOLINT
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"
#include "gmock/internal/gmock-pp.h"
#include "gtest/gtest.h"
// MSVC warning C5046 is new as of VS2017 version 15.8.
#if defined(_MSC_VER) && _MSC_VER >= 1915
#define GMOCK_MAYBE_5046_ 5046
#else
#define GMOCK_MAYBE_5046_
#endif
GTEST_DISABLE_MSC_WARNINGS_PUSH_( 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
clients of class B */ /* Symbol involving type with internal linkage not defined */)
namespace testing {
// To implement a matcher Foo for type T, define:
// 1. a class FooMatcherImpl that implements the
// MatcherInterface<T> interface, and
// 2. a factory function that creates a Matcher<T> object from a
// FooMatcherImpl*.
//
// The two-level delegation design makes it possible to allow a user
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
// is impossible if we pass matchers by pointers. It also eases
// ownership management as Matcher objects can now be copied like
// plain values.
// A match result listener that stores the explanation in a string.
class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {}
// Returns the explanation accumulated so far.
std::string str() const { return ss_.str(); }
// Clears the explanation accumulated so far.
void Clear() { ss_.str(""); }
private: ::std::stringstream ss_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); };
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// The MatcherCastImpl class template is a helper for implementing
// MatcherCast(). We need this helper in order to partially
// specialize the implementation of MatcherCast() (C++ allows
// class/struct templates to be partially specialized, but not
// function templates.).
// This general version is used when MatcherCast()'s argument is a
// polymorphic matcher (i.e. something that can be converted to a
// Matcher but is not one yet; for example, Eq(value)) or a value (for
// example, "hello").
template <typename T, typename M> class MatcherCastImpl { public: static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { // M can be a polymorphic matcher, in which case we want to use
// its conversion operator to create Matcher<T>. Or it can be a value
// that should be passed to the Matcher<T>'s constructor.
//
// We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
// polymorphic matcher because it'll be ambiguous if T has an implicit
// constructor from M (this usually happens when T has an implicit
// constructor from any type).
//
// It won't work to unconditionally implicit_cast
// polymorphic_matcher_or_value to Matcher<T> because it won't trigger
// a user-defined conversion from M to T if one exists (assuming M is
// a value).
return CastImpl(polymorphic_matcher_or_value, std::is_convertible<M, Matcher<T>>{}, std::is_convertible<M, T>{}); }
private: template <bool Ignore> static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, std::true_type /* convertible_to_matcher */, std::integral_constant<bool, Ignore>) { // M is implicitly convertible to Matcher<T>, which means that either
// M is a polymorphic matcher or Matcher<T> has an implicit constructor
// from M. In both cases using the implicit conversion will produce a
// matcher.
//
// Even if T has an implicit constructor from M, it won't be called because
// creating Matcher<T> would require a chain of two user-defined conversions
// (first to create T from M and then to create Matcher<T> from T).
return polymorphic_matcher_or_value; }
// M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
// matcher. It's a value of a type implicitly convertible to T. Use direct
// initialization to create a matcher.
static Matcher<T> CastImpl(const M& value, std::false_type /* convertible_to_matcher */, std::true_type /* convertible_to_T */) { return Matcher<T>(ImplicitCast_<T>(value)); }
// M can't be implicitly converted to either Matcher<T> or T. Attempt to use
// polymorphic matcher Eq(value) in this case.
//
// Note that we first attempt to perform an implicit cast on the value and
// only fall back to the polymorphic Eq() matcher afterwards because the
// latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
// which might be undefined even when Rhs is implicitly convertible to Lhs
// (e.g. std::pair<const int, int> vs. std::pair<int, int>).
//
// We don't define this method inline as we need the declaration of Eq().
static Matcher<T> CastImpl(const M& value, std::false_type /* convertible_to_matcher */, std::false_type /* convertible_to_T */); };
// This more specialized version is used when MatcherCast()'s argument
// is already a Matcher. This only compiles when type T can be
// statically converted to type U.
template <typename T, typename U> class MatcherCastImpl<T, Matcher<U> > { public: static Matcher<T> Cast(const Matcher<U>& source_matcher) { return Matcher<T>(new Impl(source_matcher)); }
private: class Impl : public MatcherInterface<T> { public: explicit Impl(const Matcher<U>& source_matcher) : source_matcher_(source_matcher) {}
// We delegate the matching logic to the source matcher.
bool MatchAndExplain(T x, MatchResultListener* listener) const override { using FromType = typename std::remove_cv<typename std::remove_pointer< typename std::remove_reference<T>::type>::type>::type; using ToType = typename std::remove_cv<typename std::remove_pointer< typename std::remove_reference<U>::type>::type>::type; // Do not allow implicitly converting base*/& to derived*/&.
static_assert( // Do not trigger if only one of them is a pointer. That implies a
// regular conversion and not a down_cast.
(std::is_pointer<typename std::remove_reference<T>::type>::value != std::is_pointer<typename std::remove_reference<U>::type>::value) || std::is_same<FromType, ToType>::value || !std::is_base_of<FromType, ToType>::value, "Can't implicitly convert from <base> to <derived>");
// Do the cast to `U` explicitly if necessary.
// Otherwise, let implicit conversions do the trick.
using CastType = typename std::conditional<std::is_convertible<T&, const U&>::value, T&, U>::type;
return source_matcher_.MatchAndExplain(static_cast<CastType>(x), listener); }
void DescribeTo(::std::ostream* os) const override { source_matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { source_matcher_.DescribeNegationTo(os); }
private: const Matcher<U> source_matcher_; }; };
// This even more specialized version is used for efficiently casting
// a matcher to its own type.
template <typename T> class MatcherCastImpl<T, Matcher<T> > { public: static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } };
// Template specialization for parameterless Matcher.
template <typename Derived> class MatcherBaseImpl { public: MatcherBaseImpl() = default;
template <typename T> operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
return ::testing::Matcher<T>(new typename Derived::template gmock_Impl<T>()); } };
// Template specialization for Matcher with parameters.
template <template <typename...> class Derived, typename... Ts> class MatcherBaseImpl<Derived<Ts...>> { public: // Mark the constructor explicit for single argument T to avoid implicit
// conversions.
template <typename E = std::enable_if<sizeof...(Ts) == 1>, typename E::type* = nullptr> explicit MatcherBaseImpl(Ts... params) : params_(std::forward<Ts>(params)...) {} template <typename E = std::enable_if<sizeof...(Ts) != 1>, typename = typename E::type> MatcherBaseImpl(Ts... params) // NOLINT
: params_(std::forward<Ts>(params)...) {}
template <typename F> operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); }
private: template <typename F, std::size_t... tuple_ids> ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { return ::testing::Matcher<F>( new typename Derived<Ts...>::template gmock_Impl<F>( std::get<tuple_ids>(params_)...)); }
const std::tuple<Ts...> params_; };
} // namespace internal
// In order to be safe and clear, casting between different matcher
// types is done explicitly via MatcherCast<T>(m), which takes a
// matcher m and returns a Matcher<T>. It compiles only when T can be
// statically converted to the argument type of m.
template <typename T, typename M> inline Matcher<T> MatcherCast(const M& matcher) { return internal::MatcherCastImpl<T, M>::Cast(matcher); }
// This overload handles polymorphic matchers and values only since
// monomorphic matchers are handled by the next one.
template <typename T, typename M> inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { return MatcherCast<T>(polymorphic_matcher_or_value); }
// This overload handles monomorphic matchers.
//
// In general, if type T can be implicitly converted to type U, we can
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
// contravariant): just keep a copy of the original Matcher<U>, convert the
// argument from type T to U, and then pass it to the underlying Matcher<U>.
// The only exception is when U is a reference and T is not, as the
// underlying Matcher<U> may be interested in the argument's address, which
// is not preserved in the conversion from T to U.
template <typename T, typename U> inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { // Enforce that T can be implicitly converted to U.
static_assert(std::is_convertible<const T&, const U&>::value, "T must be implicitly convertible to U"); // Enforce that we are not converting a non-reference type T to a reference
// type U.
GTEST_COMPILE_ASSERT_( std::is_reference<T>::value || !std::is_reference<U>::value, cannot_convert_non_reference_arg_to_reference); // In case both T and U are arithmetic types, enforce that the
// conversion is not lossy.
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; GTEST_COMPILE_ASSERT_( kTIsOther || kUIsOther || (internal::LosslessArithmeticConvertible<RawT, RawU>::value), conversion_of_arithmetic_types_must_be_lossless); return MatcherCast<T>(matcher); }
// A<T>() returns a matcher that matches any value of type T.
template <typename T> Matcher<T> A();
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// If the explanation is not empty, prints it to the ostream.
inline void PrintIfNotEmpty(const std::string& explanation, ::std::ostream* os) { if (explanation != "" && os != nullptr) { *os << ", " << explanation; } }
// Returns true if the given type name is easy to read by a human.
// This is used to decide whether printing the type of a value might
// be helpful.
inline bool IsReadableTypeName(const std::string& type_name) { // We consider a type name readable if it's short or doesn't contain
// a template or function type.
return (type_name.length() <= 20 || type_name.find_first_of("<(") == std::string::npos); }
// Matches the value against the given matcher, prints the value and explains
// the match result to the listener. Returns the match result.
// 'listener' must not be NULL.
// Value cannot be passed by const reference, because some matchers take a
// non-const argument.
template <typename Value, typename T> bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, MatchResultListener* listener) { if (!listener->IsInterested()) { // If the listener is not interested, we do not need to construct the
// inner explanation.
return matcher.Matches(value); }
StringMatchResultListener inner_listener; const bool match = matcher.MatchAndExplain(value, &inner_listener);
UniversalPrint(value, listener->stream()); #if GTEST_HAS_RTTI
const std::string& type_name = GetTypeName<Value>(); if (IsReadableTypeName(type_name)) *listener->stream() << " (of type " << type_name << ")"; #endif
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return match; }
// An internal helper class for doing compile-time loop on a tuple's
// fields.
template <size_t N> class TuplePrefix { public: // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
// if and only if the first N fields of matcher_tuple matches
// the first N fields of value_tuple, respectively.
template <typename MatcherTuple, typename ValueTuple> static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); }
// TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
// describes failures in matching the first N fields of matchers
// against the first N fields of values. If there is no failure,
// nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple> static void ExplainMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { // First, describes failures in the first N - 1 fields.
TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
// Then describes the failure (if any) in the (N - 1)-th (0-based)
// field.
typename std::tuple_element<N - 1, MatcherTuple>::type matcher = std::get<N - 1>(matchers); typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; const Value& value = std::get<N - 1>(values); StringMatchResultListener listener; if (!matcher.MatchAndExplain(value, &listener)) { *os << " Expected arg #" << N - 1 << ": "; std::get<N - 1>(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the
// universal printer from printing the address of value, which
// isn't interesting to the user most of the time. The
// matcher's MatchAndExplain() method handles the case when
// the address is interesting.
internal::UniversalPrint(value, os); PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } };
// The base case.
template <> class TuplePrefix<0> { public: template <typename MatcherTuple, typename ValueTuple> static bool Matches(const MatcherTuple& /* matcher_tuple */, const ValueTuple& /* value_tuple */) { return true; }
template <typename MatcherTuple, typename ValueTuple> static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, const ValueTuple& /* values */, ::std::ostream* /* os */) {} };
// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
// all matchers in matcher_tuple match the corresponding fields in
// value_tuple. It is a compiler error if matcher_tuple and
// value_tuple have different number of fields or incompatible field
// types.
template <typename MatcherTuple, typename ValueTuple> bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { // Makes sure that matcher_tuple and value_tuple have the same
// number of fields.
GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == std::tuple_size<ValueTuple>::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, value_tuple); }
// Describes failures in matching matchers against values. If there
// is no failure, nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple> void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( matchers, values, os); }
// TransformTupleValues and its helper.
//
// TransformTupleValuesHelper hides the internal machinery that
// TransformTupleValues uses to implement a tuple traversal.
template <typename Tuple, typename Func, typename OutIter> class TransformTupleValuesHelper { private: typedef ::std::tuple_size<Tuple> TupleSize;
public: // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
// Returns the final value of 'out' in case the caller needs it.
static OutIter Run(Func f, const Tuple& t, OutIter out) { return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); }
private: template <typename Tup, size_t kRemainingSize> struct IterateOverTuple { OutIter operator() (Func f, const Tup& t, OutIter out) const { *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); } }; template <typename Tup> struct IterateOverTuple<Tup, 0> { OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { return out; } }; };
// Successively invokes 'f(element)' on each element of the tuple 't',
// appending each result to the 'out' iterator. Returns the final value
// of 'out'.
template <typename Tuple, typename Func, typename OutIter> OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); }
// Implements _, a matcher that matches any value of any
// type. This is a polymorphic matcher, so we need a template type
// conversion operator to make it appearing as a Matcher<T> for any
// type T.
class AnythingMatcher { public: using is_gtest_matcher = void;
template <typename T> bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { return true; } void DescribeTo(std::ostream* os) const { *os << "is anything"; } void DescribeNegationTo(::std::ostream* os) const { // This is mostly for completeness' sake, as it's not very useful
// to write Not(A<bool>()). However we cannot completely rule out
// such a possibility, and it doesn't hurt to be prepared.
*os << "never matches"; } };
// Implements the polymorphic IsNull() matcher, which matches any raw or smart
// pointer that is NULL.
class IsNullMatcher { public: template <typename Pointer> bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return p == nullptr; }
void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } };
// Implements the polymorphic NotNull() matcher, which matches any raw or smart
// pointer that is not NULL.
class NotNullMatcher { public: template <typename Pointer> bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return p != nullptr; }
void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } };
// Ref(variable) matches any argument that is a reference to
// 'variable'. This matcher is polymorphic as it can match any
// super type of the type of 'variable'.
//
// The RefMatcher template class implements Ref(variable). It can
// only be instantiated with a reference type. This prevents a user
// from mistakenly using Ref(x) to match a non-reference function
// argument. For example, the following will righteously cause a
// compiler error:
//
// int n;
// Matcher<int> m1 = Ref(n); // This won't compile.
// Matcher<int&> m2 = Ref(n); // This will compile.
template <typename T> class RefMatcher;
template <typename T> class RefMatcher<T&> { // Google Mock is a generic framework and thus needs to support
// mocking any function types, including those that take non-const
// reference arguments. Therefore the template parameter T (and
// Super below) can be instantiated to either a const type or a
// non-const type.
public: // RefMatcher() takes a T& instead of const T&, as we want the
// compiler to catch using Ref(const_value) as a matcher for a
// non-const reference.
explicit RefMatcher(T& x) : object_(x) {} // NOLINT
template <typename Super> operator Matcher<Super&>() const { // By passing object_ (type T&) to Impl(), which expects a Super&,
// we make sure that Super is a super type of T. In particular,
// this catches using Ref(const_value) as a matcher for a
// non-const reference, as you cannot implicitly convert a const
// reference to a non-const reference.
return MakeMatcher(new Impl<Super>(object_)); }
private: template <typename Super> class Impl : public MatcherInterface<Super&> { public: explicit Impl(Super& x) : object_(x) {} // NOLINT
// MatchAndExplain() takes a Super& (as opposed to const Super&)
// in order to match the interface MatcherInterface<Super&>.
bool MatchAndExplain(Super& x, MatchResultListener* listener) const override { *listener << "which is located @" << static_cast<const void*>(&x); return &x == &object_; }
void DescribeTo(::std::ostream* os) const override { *os << "references the variable "; UniversalPrinter<Super&>::Print(object_, os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "does not reference the variable "; UniversalPrinter<Super&>::Print(object_, os); }
private: const Super& object_; };
T& object_; };
// Polymorphic helper functions for narrow and wide string matchers.
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); }
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); }
// String comparison for narrow or wide strings that can have embedded NUL
// characters.
template <typename StringType> bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal?
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; }
// Skip the equal heads.
const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul);
// Are we at the end of either s1 or s2?
if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; }
// Are the tails equal?
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); }
// String matchers.
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
template <typename StringType> class StrEqualityMatcher { public: StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) : string_(std::move(str)), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
#if GTEST_INTERNAL_HAS_STRING_VIEW
bool MatchAndExplain(const internal::StringView& s, MatchResultListener* listener) const { // This should fail to compile if StringView is used with wide
// strings.
const StringType& str = std::string(s); return MatchAndExplain(str, listener); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { if (s == nullptr) { return !expect_eq_; } return MatchAndExplain(StringType(s), listener); }
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringView has some interfering non-explicit constructors.
template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType s2(s); const bool eq = case_sensitive_ ? s2 == string_ : CaseInsensitiveStringEquals(s2, string_); return expect_eq_ == eq; }
void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); }
void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); }
private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << (expect_eq ? "is " : "isn't "); *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrint(string_, os); }
const StringType string_; const bool expect_eq_; const bool case_sensitive_; };
// Implements the polymorphic HasSubstr(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType> class HasSubstrMatcher { public: explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {}
#if GTEST_INTERNAL_HAS_STRING_VIEW
bool MatchAndExplain(const internal::StringView& s, MatchResultListener* listener) const { // This should fail to compile if StringView is used with wide
// strings.
const StringType& str = std::string(s); return MatchAndExplain(str, listener); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); }
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringView has some interfering non-explicit constructors.
template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { return StringType(s).find(substring_) != StringType::npos; }
// Describes what this matcher matches.
void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrint(substring_, os); }
void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrint(substring_, os); }
private: const StringType substring_; };
// Implements the polymorphic StartsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType> class StartsWithMatcher { public: explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { }
#if GTEST_INTERNAL_HAS_STRING_VIEW
bool MatchAndExplain(const internal::StringView& s, MatchResultListener* listener) const { // This should fail to compile if StringView is used with wide
// strings.
const StringType& str = std::string(s); return MatchAndExplain(str, listener); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); }
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringView has some interfering non-explicit constructors.
template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= prefix_.length() && s2.substr(0, prefix_.length()) == prefix_; }
void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrint(prefix_, os); }
void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrint(prefix_, os); }
private: const StringType prefix_; };
// Implements the polymorphic EndsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType> class EndsWithMatcher { public: explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
#if GTEST_INTERNAL_HAS_STRING_VIEW
bool MatchAndExplain(const internal::StringView& s, MatchResultListener* listener) const { // This should fail to compile if StringView is used with wide
// strings.
const StringType& str = std::string(s); return MatchAndExplain(str, listener); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); }
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringView has some interfering non-explicit constructors.
template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= suffix_.length() && s2.substr(s2.length() - suffix_.length()) == suffix_; }
void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrint(suffix_, os); }
void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrint(suffix_, os); }
private: const StringType suffix_; };
// Implements a matcher that compares the two fields of a 2-tuple
// using one of the ==, <=, <, etc, operators. The two fields being
// compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq() can be
// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
// etc). Therefore we use a template type conversion operator in the
// implementation.
template <typename D, typename Op> class PairMatchBase { public: template <typename T1, typename T2> operator Matcher<::std::tuple<T1, T2>>() const { return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); } template <typename T1, typename T2> operator Matcher<const ::std::tuple<T1, T2>&>() const { return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); }
private: static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
return os << D::Desc(); }
template <typename Tuple> class Impl : public MatcherInterface<Tuple> { public: bool MatchAndExplain(Tuple args, MatchResultListener* /* listener */) const override { return Op()(::std::get<0>(args), ::std::get<1>(args)); } void DescribeTo(::std::ostream* os) const override { *os << "are " << GetDesc; } void DescribeNegationTo(::std::ostream* os) const override { *os << "aren't " << GetDesc; } }; };
class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { public: static const char* Desc() { return "an equal pair"; } }; class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { public: static const char* Desc() { return "an unequal pair"; } }; class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { public: static const char* Desc() { return "a pair where the first < the second"; } }; class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { public: static const char* Desc() { return "a pair where the first > the second"; } }; class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { public: static const char* Desc() { return "a pair where the first <= the second"; } }; class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { public: static const char* Desc() { return "a pair where the first >= the second"; } };
// Implements the Not(...) matcher for a particular argument type T.
// We do not nest it inside the NotMatcher class template, as that
// will prevent different instantiations of NotMatcher from sharing
// the same NotMatcherImpl<T> class.
template <typename T> class NotMatcherImpl : public MatcherInterface<const T&> { public: explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { return !matcher_.MatchAndExplain(x, listener); }
void DescribeTo(::std::ostream* os) const override { matcher_.DescribeNegationTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { matcher_.DescribeTo(os); }
private: const Matcher<T> matcher_; };
// Implements the Not(m) matcher, which matches a value that doesn't
// match matcher m.
template <typename InnerMatcher> class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
// This template type conversion operator allows Not(m) to be used
// to match any type m can match.
template <typename T> operator Matcher<T>() const { return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); }
private: InnerMatcher matcher_; };
// Implements the AllOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the BothOfMatcher class template, as
// that will prevent different instantiations of BothOfMatcher from
// sharing the same BothOfMatcherImpl<T> class.
template <typename T> class AllOfMatcherImpl : public MatcherInterface<const T&> { public: explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) : matchers_(std::move(matchers)) {}
void DescribeTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") and ("; matchers_[i].DescribeTo(os); } *os << ")"; }
void DescribeNegationTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") or ("; matchers_[i].DescribeNegationTo(os); } *os << ")"; }
bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { // If either matcher1_ or matcher2_ doesn't match x, we only need
// to explain why one of them fails.
std::string all_match_result;
for (size_t i = 0; i < matchers_.size(); ++i) { StringMatchResultListener slistener; if (matchers_[i].MatchAndExplain(x, &slistener)) { if (all_match_result.empty()) { all_match_result = slistener.str(); } else { std::string result = slistener.str(); if (!result.empty()) { all_match_result += ", and "; all_match_result += result; } } } else { *listener << slistener.str(); return false; } }
// Otherwise we need to explain why *both* of them match.
*listener << all_match_result; return true; }
private: const std::vector<Matcher<T> > matchers_; };
// VariadicMatcher is used for the variadic implementation of
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
// CombiningMatcher<T> is used to recursively combine the provided matchers
// (of type Args...).
template <template <typename T> class CombiningMatcher, typename... Args> class VariadicMatcher { public: VariadicMatcher(const Args&... matchers) // NOLINT
: matchers_(matchers...) { static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); }
VariadicMatcher(const VariadicMatcher&) = default; VariadicMatcher& operator=(const VariadicMatcher&) = delete;
// This template type conversion operator allows an
// VariadicMatcher<Matcher1, Matcher2...> object to match any type that
// all of the provided matchers (Matcher1, Matcher2, ...) can match.
template <typename T> operator Matcher<T>() const { std::vector<Matcher<T> > values; CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); return Matcher<T>(new CombiningMatcher<T>(std::move(values))); }
private: template <typename T, size_t I> void CreateVariadicMatcher(std::vector<Matcher<T> >* values, std::integral_constant<size_t, I>) const { values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); }
template <typename T> void CreateVariadicMatcher( std::vector<Matcher<T> >*, std::integral_constant<size_t, sizeof...(Args)>) const {}
std::tuple<Args...> matchers_; };
template <typename... Args> using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
// Implements the AnyOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the AnyOfMatcher class template, as
// that will prevent different instantiations of AnyOfMatcher from
// sharing the same EitherOfMatcherImpl<T> class.
template <typename T> class AnyOfMatcherImpl : public MatcherInterface<const T&> { public: explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) : matchers_(std::move(matchers)) {}
void DescribeTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") or ("; matchers_[i].DescribeTo(os); } *os << ")"; }
void DescribeNegationTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") and ("; matchers_[i].DescribeNegationTo(os); } *os << ")"; }
bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { std::string no_match_result;
// If either matcher1_ or matcher2_ matches x, we just need to
// explain why *one* of them matches.
for (size_t i = 0; i < matchers_.size(); ++i) { StringMatchResultListener slistener; if (matchers_[i].MatchAndExplain(x, &slistener)) { *listener << slistener.str(); return true; } else { if (no_match_result.empty()) { no_match_result = slistener.str(); } else { std::string result = slistener.str(); if (!result.empty()) { no_match_result += ", and "; no_match_result += result; } } } }
// Otherwise we need to explain why *both* of them fail.
*listener << no_match_result; return false; }
private: const std::vector<Matcher<T> > matchers_; };
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
template <typename... Args> using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
// Wrapper for implementation of Any/AllOfArray().
template <template <class> class MatcherImpl, typename T> class SomeOfArrayMatcher { public: // Constructs the matcher from a sequence of element values or
// element matchers.
template <typename Iter> SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
template <typename U> operator Matcher<U>() const { // NOLINT
using RawU = typename std::decay<U>::type; std::vector<Matcher<RawU>> matchers; for (const auto& matcher : matchers_) { matchers.push_back(MatcherCast<RawU>(matcher)); } return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); }
private: const ::std::vector<T> matchers_; };
template <typename T> using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
template <typename T> using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
// Used for implementing Truly(pred), which turns a predicate into a
// matcher.
template <typename Predicate> class TrulyMatcher { public: explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
// This method template allows Truly(pred) to be used as a matcher
// for type T where T is the argument type of predicate 'pred'. The
// argument is passed by reference as the predicate may be
// interested in the address of the argument.
template <typename T> bool MatchAndExplain(T& x, // NOLINT
MatchResultListener* listener) const { // Without the if-statement, MSVC sometimes warns about converting
// a value to bool (warning 4800).
//
// We cannot write 'return !!predicate_(x);' as that doesn't work
// when predicate_(x) returns a class convertible to bool but
// having no operator!().
if (predicate_(x)) return true; *listener << "didn't satisfy the given predicate"; return false; }
void DescribeTo(::std::ostream* os) const { *os << "satisfies the given predicate"; }
void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't satisfy the given predicate"; }
private: Predicate predicate_; };
// Used for implementing Matches(matcher), which turns a matcher into
// a predicate.
template <typename M> class MatcherAsPredicate { public: explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
// This template operator() allows Matches(m) to be used as a
// predicate on type T where m is a matcher on type T.
//
// The argument x is passed by reference instead of by value, as
// some matcher may be interested in its address (e.g. as in
// Matches(Ref(n))(x)).
template <typename T> bool operator()(const T& x) const { // We let matcher_ commit to a particular type here instead of
// when the MatcherAsPredicate object was constructed. This
// allows us to write Matches(m) where m is a polymorphic matcher
// (e.g. Eq(5)).
//
// If we write Matcher<T>(matcher_).Matches(x) here, it won't
// compile when matcher_ has type Matcher<const T&>; if we write
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile
// when matcher_ has type Matcher<T>; if we just write
// matcher_.Matches(x), it won't compile when matcher_ is
// polymorphic, e.g. Eq(5).
//
// MatcherCast<const T&>() is necessary for making the code work
// in all of the above situations.
return MatcherCast<const T&>(matcher_).Matches(x); }
private: M matcher_; };
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
// argument M must be a type that can be converted to a matcher.
template <typename M> class PredicateFormatterFromMatcher { public: explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
// This template () operator allows a PredicateFormatterFromMatcher
// object to act as a predicate-formatter suitable for using with
// Google Test's EXPECT_PRED_FORMAT1() macro.
template <typename T> AssertionResult operator()(const char* value_text, const T& x) const { // We convert matcher_ to a Matcher<const T&> *now* instead of
// when the PredicateFormatterFromMatcher object was constructed,
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't
// know which type to instantiate it to until we actually see the
// type of x here.
//
// We write SafeMatcherCast<const T&>(matcher_) instead of
// Matcher<const T&>(matcher_), as the latter won't compile when
// matcher_ has type Matcher<T> (e.g. An<int>()).
// We don't write MatcherCast<const T&> either, as that allows
// potentially unsafe downcasting of the matcher argument.
const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
// The expected path here is that the matcher should match (i.e. that most
// tests pass) so optimize for this case.
if (matcher.Matches(x)) { return AssertionSuccess(); }
::std::stringstream ss; ss << "Value of: " << value_text << "\n" << "Expected: "; matcher.DescribeTo(&ss);
// Rerun the matcher to "PrintAndExplain" the failure.
StringMatchResultListener listener; if (MatchPrintAndExplain(x, matcher, &listener)) { ss << "\n The matcher failed on the initial attempt; but passed when " "rerun to generate the explanation."; } ss << "\n Actual: " << listener.str(); return AssertionFailure() << ss.str(); }
private: const M matcher_; };
// A helper function for converting a matcher to a predicate-formatter
// without the user needing to explicitly write the type. This is
// used for implementing ASSERT_THAT() and EXPECT_THAT().
// Implementation detail: 'matcher' is received by-value to force decaying.
template <typename M> inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(M matcher) { return PredicateFormatterFromMatcher<M>(std::move(matcher)); }
// Implements the polymorphic IsNan() matcher, which matches any floating type
// value that is Nan.
class IsNanMatcher { public: template <typename FloatType> bool MatchAndExplain(const FloatType& f, MatchResultListener* /* listener */) const { return (::std::isnan)(f); }
void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; } };
// Implements the polymorphic floating point equality matcher, which matches
// two float values using ULP-based approximation or, optionally, a
// user-specified epsilon. The template is meant to be instantiated with
// FloatType being either float or double.
template <typename FloatType> class FloatingEqMatcher { public: // Constructor for FloatingEqMatcher.
// The matcher's input will be compared with expected. The matcher treats two
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
// equality comparisons between NANs will always return false. We specify a
// negative max_abs_error_ term to indicate that ULP-based approximation will
// be used for comparison.
FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { }
// Constructor that supports a user-specified max_abs_error that will be used
// for comparison instead of ULP-based approximation. The max absolute
// should be non-negative.
FloatingEqMatcher(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) { GTEST_CHECK_(max_abs_error >= 0) << ", where max_abs_error is" << max_abs_error; }
// Implements floating point equality matcher as a Matcher<T>.
template <typename T> class Impl : public MatcherInterface<T> { public: Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) {}
bool MatchAndExplain(T value, MatchResultListener* listener) const override { const FloatingPoint<FloatType> actual(value), expected(expected_);
// Compares NaNs first, if nan_eq_nan_ is true.
if (actual.is_nan() || expected.is_nan()) { if (actual.is_nan() && expected.is_nan()) { return nan_eq_nan_; } // One is nan; the other is not nan.
return false; } if (HasMaxAbsError()) { // We perform an equality check so that inf will match inf, regardless
// of error bounds. If the result of value - expected_ would result in
// overflow or if either value is inf, the default result is infinity,
// which should only match if max_abs_error_ is also infinity.
if (value == expected_) { return true; }
const FloatType diff = value - expected_; if (::std::fabs(diff) <= max_abs_error_) { return true; }
if (listener->IsInterested()) { *listener << "which is " << diff << " from " << expected_; } return false; } else { return actual.AlmostEquals(expected); } }
void DescribeTo(::std::ostream* os) const override { // os->precision() returns the previously set precision, which we
// store to restore the ostream to its original configuration
// after outputting.
const ::std::streamsize old_precision = os->precision( ::std::numeric_limits<FloatType>::digits10 + 2); if (FloatingPoint<FloatType>(expected_).is_nan()) { if (nan_eq_nan_) { *os << "is NaN"; } else { *os << "never matches"; } } else { *os << "is approximately " << expected_; if (HasMaxAbsError()) { *os << " (absolute error <= " << max_abs_error_ << ")"; } } os->precision(old_precision); }
void DescribeNegationTo(::std::ostream* os) const override { // As before, get original precision.
const ::std::streamsize old_precision = os->precision( ::std::numeric_limits<FloatType>::digits10 + 2); if (FloatingPoint<FloatType>(expected_).is_nan()) { if (nan_eq_nan_) { *os << "isn't NaN"; } else { *os << "is anything"; } } else { *os << "isn't approximately " << expected_; if (HasMaxAbsError()) { *os << " (absolute error > " << max_abs_error_ << ")"; } } // Restore original precision.
os->precision(old_precision); }
private: bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
const FloatType expected_; const bool nan_eq_nan_; // max_abs_error will be used for value comparison when >= 0.
const FloatType max_abs_error_; };
// The following 3 type conversion operators allow FloatEq(expected) and
// NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
// Matcher<const float&>, or a Matcher<float&>, but nothing else.
operator Matcher<FloatType>() const { return MakeMatcher( new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); }
operator Matcher<const FloatType&>() const { return MakeMatcher( new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); }
operator Matcher<FloatType&>() const { return MakeMatcher( new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); }
private: const FloatType expected_; const bool nan_eq_nan_; // max_abs_error will be used for value comparison when >= 0.
const FloatType max_abs_error_; };
// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
// against y. The former implements "Eq", the latter "Near". At present, there
// is no version that compares NaNs as equal.
template <typename FloatType> class FloatingEq2Matcher { public: FloatingEq2Matcher() { Init(-1, false); }
explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
explicit FloatingEq2Matcher(FloatType max_abs_error) { Init(max_abs_error, false); }
FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { Init(max_abs_error, nan_eq_nan); }
template <typename T1, typename T2> operator Matcher<::std::tuple<T1, T2>>() const { return MakeMatcher( new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); } template <typename T1, typename T2> operator Matcher<const ::std::tuple<T1, T2>&>() const { return MakeMatcher( new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); }
private: static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
return os << "an almost-equal pair"; }
template <typename Tuple> class Impl : public MatcherInterface<Tuple> { public: Impl(FloatType max_abs_error, bool nan_eq_nan) : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
bool MatchAndExplain(Tuple args, MatchResultListener* listener) const override { if (max_abs_error_ == -1) { FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( ::std::get<1>(args), listener); } else { FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, max_abs_error_); return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( ::std::get<1>(args), listener); } } void DescribeTo(::std::ostream* os) const override { *os << "are " << GetDesc; } void DescribeNegationTo(::std::ostream* os) const override { *os << "aren't " << GetDesc; }
private: FloatType max_abs_error_; const bool nan_eq_nan_; };
void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { max_abs_error_ = max_abs_error_val; nan_eq_nan_ = nan_eq_nan_val; } FloatType max_abs_error_; bool nan_eq_nan_; };
// Implements the Pointee(m) matcher for matching a pointer whose
// pointee matches matcher m. The pointer can be either raw or smart.
template <typename InnerMatcher> class PointeeMatcher { public: explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
// This type conversion operator template allows Pointee(m) to be
// used as a matcher for any pointer type whose pointee type is
// compatible with the inner matcher, where type Pointer can be
// either a raw pointer or a smart pointer.
//
// The reason we do this instead of relying on
// MakePolymorphicMatcher() is that the latter is not flexible
// enough for implementing the DescribeTo() method of Pointee().
template <typename Pointer> operator Matcher<Pointer>() const { return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); }
private: // The monomorphic implementation that works for a particular pointer type.
template <typename Pointer> class Impl : public MatcherInterface<Pointer> { public: using Pointee = typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( Pointer)>::element_type;
explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast<const Pointee&>(matcher)) {}
void DescribeTo(::std::ostream* os) const override { *os << "points to a value that "; matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "does not point to a value that "; matcher_.DescribeTo(os); }
bool MatchAndExplain(Pointer pointer, MatchResultListener* listener) const override { if (GetRawPointer(pointer) == nullptr) return false;
*listener << "which points to "; return MatchPrintAndExplain(*pointer, matcher_, listener); }
private: const Matcher<const Pointee&> matcher_; };
const InnerMatcher matcher_; };
// Implements the Pointer(m) matcher
// Implements the Pointer(m) matcher for matching a pointer that matches matcher
// m. The pointer can be either raw or smart, and will match `m` against the
// raw pointer.
template <typename InnerMatcher> class PointerMatcher { public: explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
// This type conversion operator template allows Pointer(m) to be
// used as a matcher for any pointer type whose pointer type is
// compatible with the inner matcher, where type PointerType can be
// either a raw pointer or a smart pointer.
//
// The reason we do this instead of relying on
// MakePolymorphicMatcher() is that the latter is not flexible
// enough for implementing the DescribeTo() method of Pointer().
template <typename PointerType> operator Matcher<PointerType>() const { // NOLINT
return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); }
private: // The monomorphic implementation that works for a particular pointer type.
template <typename PointerType> class Impl : public MatcherInterface<PointerType> { public: using Pointer = const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( PointerType)>::element_type*;
explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast<Pointer>(matcher)) {}
void DescribeTo(::std::ostream* os) const override { *os << "is a pointer that "; matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "is not a pointer that "; matcher_.DescribeTo(os); }
bool MatchAndExplain(PointerType pointer, MatchResultListener* listener) const override { *listener << "which is a pointer that "; Pointer p = GetRawPointer(pointer); return MatchPrintAndExplain(p, matcher_, listener); }
private: Matcher<Pointer> matcher_; };
const InnerMatcher matcher_; };
#if GTEST_HAS_RTTI
// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
// reference that matches inner_matcher when dynamic_cast<T> is applied.
// The result of dynamic_cast<To> is forwarded to the inner matcher.
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
// If To is a reference and the cast fails, this matcher returns false
// immediately.
template <typename To> class WhenDynamicCastToMatcherBase { public: explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) : matcher_(matcher) {}
void DescribeTo(::std::ostream* os) const { GetCastTypeDescription(os); matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const { GetCastTypeDescription(os); matcher_.DescribeNegationTo(os); }
protected: const Matcher<To> matcher_;
static std::string GetToName() { return GetTypeName<To>(); }
private: static void GetCastTypeDescription(::std::ostream* os) { *os << "when dynamic_cast to " << GetToName() << ", "; } };
// Primary template.
// To is a pointer. Cast and forward the result.
template <typename To> class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { public: explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) : WhenDynamicCastToMatcherBase<To>(matcher) {}
template <typename From> bool MatchAndExplain(From from, MatchResultListener* listener) const { To to = dynamic_cast<To>(from); return MatchPrintAndExplain(to, this->matcher_, listener); } };
// Specialize for references.
// In this case we return false if the dynamic_cast fails.
template <typename To> class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { public: explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) : WhenDynamicCastToMatcherBase<To&>(matcher) {}
template <typename From> bool MatchAndExplain(From& from, MatchResultListener* listener) const { // We don't want an std::bad_cast here, so do the cast with pointers.
To* to = dynamic_cast<To*>(&from); if (to == nullptr) { *listener << "which cannot be dynamic_cast to " << this->GetToName(); return false; } return MatchPrintAndExplain(*to, this->matcher_, listener); } }; #endif // GTEST_HAS_RTTI
// Implements the Field() matcher for matching a field (i.e. member
// variable) of an object.
template <typename Class, typename FieldType> class FieldMatcher { public: FieldMatcher(FieldType Class::*field, const Matcher<const FieldType&>& matcher) : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
FieldMatcher(const std::string& field_name, FieldType Class::*field, const Matcher<const FieldType&>& matcher) : field_(field), matcher_(matcher), whose_field_("whose field `" + field_name + "` ") {}
void DescribeTo(::std::ostream* os) const { *os << "is an object " << whose_field_; matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const { *os << "is an object " << whose_field_; matcher_.DescribeNegationTo(os); }
template <typename T> bool MatchAndExplain(const T& value, MatchResultListener* listener) const { // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
// a compiler bug, and can now be removed.
return MatchAndExplainImpl( typename std::is_pointer<typename std::remove_const<T>::type>::type(), value, listener); }
private: bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, const Class& obj, MatchResultListener* listener) const { *listener << whose_field_ << "is "; return MatchPrintAndExplain(obj.*field_, matcher_, listener); }
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, MatchResultListener* listener) const { if (p == nullptr) return false;
*listener << "which points to an object "; // Since *p has a field, it must be a class/struct/union type and
// thus cannot be a pointer. Therefore we pass false_type() as
// the first argument.
return MatchAndExplainImpl(std::false_type(), *p, listener); }
const FieldType Class::*field_; const Matcher<const FieldType&> matcher_;
// Contains either "whose given field " if the name of the field is unknown
// or "whose field `name_of_field` " if the name is known.
const std::string whose_field_; };
// Implements the Property() matcher for matching a property
// (i.e. return value of a getter method) of an object.
//
// Property is a const-qualified member function of Class returning
// PropertyType.
template <typename Class, typename PropertyType, typename Property> class PropertyMatcher { public: typedef const PropertyType& RefToConstProperty;
PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) : property_(property), matcher_(matcher), whose_property_("whose given property ") {}
PropertyMatcher(const std::string& property_name, Property property, const Matcher<RefToConstProperty>& matcher) : property_(property), matcher_(matcher), whose_property_("whose property `" + property_name + "` ") {}
void DescribeTo(::std::ostream* os) const { *os << "is an object " << whose_property_; matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const { *os << "is an object " << whose_property_; matcher_.DescribeNegationTo(os); }
template <typename T> bool MatchAndExplain(const T&value, MatchResultListener* listener) const { return MatchAndExplainImpl( typename std::is_pointer<typename std::remove_const<T>::type>::type(), value, listener); }
private: bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, const Class& obj, MatchResultListener* listener) const { *listener << whose_property_ << "is "; // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
// which takes a non-const reference as argument.
RefToConstProperty result = (obj.*property_)(); return MatchPrintAndExplain(result, matcher_, listener); }
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, MatchResultListener* listener) const { if (p == nullptr) return false;
*listener << "which points to an object "; // Since *p has a property method, it must be a class/struct/union
// type and thus cannot be a pointer. Therefore we pass
// false_type() as the first argument.
return MatchAndExplainImpl(std::false_type(), *p, listener); }
Property property_; const Matcher<RefToConstProperty> matcher_;
// Contains either "whose given property " if the name of the property is
// unknown or "whose property `name_of_property` " if the name is known.
const std::string whose_property_; };
// Type traits specifying various features of different functors for ResultOf.
// The default template specifies features for functor objects.
template <typename Functor> struct CallableTraits { typedef Functor StorageType;
static void CheckIsValid(Functor /* functor */) {}
template <typename T> static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { return f(arg); } };
// Specialization for function pointers.
template <typename ArgType, typename ResType> struct CallableTraits<ResType(*)(ArgType)> { typedef ResType ResultType; typedef ResType(*StorageType)(ArgType);
static void CheckIsValid(ResType(*f)(ArgType)) { GTEST_CHECK_(f != nullptr) << "NULL function pointer is passed into ResultOf()."; } template <typename T> static ResType Invoke(ResType(*f)(ArgType), T arg) { return (*f)(arg); } };
// Implements the ResultOf() matcher for matching a return value of a
// unary function of an object.
template <typename Callable, typename InnerMatcher> class ResultOfMatcher { public: ResultOfMatcher(Callable callable, InnerMatcher matcher) : callable_(std::move(callable)), matcher_(std::move(matcher)) { CallableTraits<Callable>::CheckIsValid(callable_); }
template <typename T> operator Matcher<T>() const { return Matcher<T>(new Impl<const T&>(callable_, matcher_)); }
private: typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
template <typename T> class Impl : public MatcherInterface<T> { using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( std::declval<CallableStorageType>(), std::declval<T>()));
public: template <typename M> Impl(const CallableStorageType& callable, const M& matcher) : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
void DescribeTo(::std::ostream* os) const override { *os << "is mapped by the given callable to a value that "; matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "is mapped by the given callable to a value that "; matcher_.DescribeNegationTo(os); }
bool MatchAndExplain(T obj, MatchResultListener* listener) const override { *listener << "which is mapped by the given callable to "; // Cannot pass the return value directly to MatchPrintAndExplain, which
// takes a non-const reference as argument.
// Also, specifying template argument explicitly is needed because T could
// be a non-const reference (e.g. Matcher<Uncopyable&>).
ResultType result = CallableTraits<Callable>::template Invoke<T>(callable_, obj); return MatchPrintAndExplain(result, matcher_, listener); }
private: // Functors often define operator() as non-const method even though
// they are actually stateless. But we need to use them even when
// 'this' is a const pointer. It's the user's responsibility not to
// use stateful callables with ResultOf(), which doesn't guarantee
// how many times the callable will be invoked.
mutable CallableStorageType callable_; const Matcher<ResultType> matcher_; }; // class Impl
const CallableStorageType callable_; const InnerMatcher matcher_; };
// Implements a matcher that checks the size of an STL-style container.
template <typename SizeMatcher> class SizeIsMatcher { public: explicit SizeIsMatcher(const SizeMatcher& size_matcher) : size_matcher_(size_matcher) { }
template <typename Container> operator Matcher<Container>() const { return Matcher<Container>(new Impl<const Container&>(size_matcher_)); }
template <typename Container> class Impl : public MatcherInterface<Container> { public: using SizeType = decltype(std::declval<Container>().size()); explicit Impl(const SizeMatcher& size_matcher) : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
void DescribeTo(::std::ostream* os) const override { *os << "size "; size_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "size "; size_matcher_.DescribeNegationTo(os); }
bool MatchAndExplain(Container container, MatchResultListener* listener) const override { SizeType size = container.size(); StringMatchResultListener size_listener; const bool result = size_matcher_.MatchAndExplain(size, &size_listener); *listener << "whose size " << size << (result ? " matches" : " doesn't match"); PrintIfNotEmpty(size_listener.str(), listener->stream()); return result; }
private: const Matcher<SizeType> size_matcher_; };
private: const SizeMatcher size_matcher_; };
// Implements a matcher that checks the begin()..end() distance of an STL-style
// container.
template <typename DistanceMatcher> class BeginEndDistanceIsMatcher { public: explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) : distance_matcher_(distance_matcher) {}
template <typename Container> operator Matcher<Container>() const { return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); }
template <typename Container> class Impl : public MatcherInterface<Container> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; typedef typename std::iterator_traits< typename ContainerView::type::const_iterator>::difference_type DistanceType; explicit Impl(const DistanceMatcher& distance_matcher) : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
void DescribeTo(::std::ostream* os) const override { *os << "distance between begin() and end() "; distance_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "distance between begin() and end() "; distance_matcher_.DescribeNegationTo(os); }
bool MatchAndExplain(Container container, MatchResultListener* listener) const override { using std::begin; using std::end; DistanceType distance = std::distance(begin(container), end(container)); StringMatchResultListener distance_listener; const bool result = distance_matcher_.MatchAndExplain(distance, &distance_listener); *listener << "whose distance between begin() and end() " << distance << (result ? " matches" : " doesn't match"); PrintIfNotEmpty(distance_listener.str(), listener->stream()); return result; }
private: const Matcher<DistanceType> distance_matcher_; };
private: const DistanceMatcher distance_matcher_; };
// Implements an equality matcher for any STL-style container whose elements
// support ==. This matcher is like Eq(), but its failure explanations provide
// more detailed information that is useful when the container is used as a set.
// The failure message reports elements that are in one of the operands but not
// the other. The failure messages do not report duplicate or out-of-order
// elements in the containers (which don't properly matter to sets, but can
// occur if the containers are vectors or lists, for example).
//
// Uses the container's const_iterator, value_type, operator ==,
// begin(), and end().
template <typename Container> class ContainerEqMatcher { public: typedef internal::StlContainerView<Container> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference;
static_assert(!std::is_const<Container>::value, "Container type must not be const"); static_assert(!std::is_reference<Container>::value, "Container type must not be a reference");
// We make a copy of expected in case the elements in it are modified
// after this matcher is created.
explicit ContainerEqMatcher(const Container& expected) : expected_(View::Copy(expected)) {}
void DescribeTo(::std::ostream* os) const { *os << "equals "; UniversalPrint(expected_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "does not equal "; UniversalPrint(expected_, os); }
template <typename LhsContainer> bool MatchAndExplain(const LhsContainer& lhs, MatchResultListener* listener) const { typedef internal::StlContainerView< typename std::remove_const<LhsContainer>::type> LhsView; typedef typename LhsView::type LhsStlContainer; StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); if (lhs_stl_container == expected_) return true;
::std::ostream* const os = listener->stream(); if (os != nullptr) { // Something is different. Check for extra values first.
bool printed_header = false; for (typename LhsStlContainer::const_iterator it = lhs_stl_container.begin(); it != lhs_stl_container.end(); ++it) { if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == expected_.end()) { if (printed_header) { *os << ", "; } else { *os << "which has these unexpected elements: "; printed_header = true; } UniversalPrint(*it, os); } }
// Now check for missing values.
bool printed_header2 = false; for (typename StlContainer::const_iterator it = expected_.begin(); it != expected_.end(); ++it) { if (internal::ArrayAwareFind( lhs_stl_container.begin(), lhs_stl_container.end(), *it) == lhs_stl_container.end()) { if (printed_header2) { *os << ", "; } else { *os << (printed_header ? ",\nand" : "which") << " doesn't have these expected elements: "; printed_header2 = true; } UniversalPrint(*it, os); } } }
return false; }
private: const StlContainer expected_; };
// A comparator functor that uses the < operator to compare two values.
struct LessComparator { template <typename T, typename U> bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } };
// Implements WhenSortedBy(comparator, container_matcher).
template <typename Comparator, typename ContainerMatcher> class WhenSortedByMatcher { public: WhenSortedByMatcher(const Comparator& comparator, const ContainerMatcher& matcher) : comparator_(comparator), matcher_(matcher) {}
template <typename LhsContainer> operator Matcher<LhsContainer>() const { return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); }
template <typename LhsContainer> class Impl : public MatcherInterface<LhsContainer> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; typedef typename LhsView::const_reference LhsStlContainerReference; // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
// so that we can match associative containers.
typedef typename RemoveConstFromKey< typename LhsStlContainer::value_type>::type LhsValue;
Impl(const Comparator& comparator, const ContainerMatcher& matcher) : comparator_(comparator), matcher_(matcher) {}
void DescribeTo(::std::ostream* os) const override { *os << "(when sorted) "; matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "(when sorted) "; matcher_.DescribeNegationTo(os); }
bool MatchAndExplain(LhsContainer lhs, MatchResultListener* listener) const override { LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), lhs_stl_container.end()); ::std::sort( sorted_container.begin(), sorted_container.end(), comparator_);
if (!listener->IsInterested()) { // If the listener is not interested, we do not need to
// construct the inner explanation.
return matcher_.Matches(sorted_container); }
*listener << "which is "; UniversalPrint(sorted_container, listener->stream()); *listener << " when sorted";
StringMatchResultListener inner_listener; const bool match = matcher_.MatchAndExplain(sorted_container, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; }
private: const Comparator comparator_; const Matcher<const ::std::vector<LhsValue>&> matcher_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); };
private: const Comparator comparator_; const ContainerMatcher matcher_; };
// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
// must be able to be safely cast to Matcher<std::tuple<const T1&, const
// T2&> >, where T1 and T2 are the types of elements in the LHS
// container and the RHS container respectively.
template <typename TupleMatcher, typename RhsContainer> class PointwiseMatcher { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, use_UnorderedPointwise_with_hash_tables);
public: typedef internal::StlContainerView<RhsContainer> RhsView; typedef typename RhsView::type RhsStlContainer; typedef typename RhsStlContainer::value_type RhsValue;
static_assert(!std::is_const<RhsContainer>::value, "RhsContainer type must not be const"); static_assert(!std::is_reference<RhsContainer>::value, "RhsContainer type must not be a reference");
// Like ContainerEq, we make a copy of rhs in case the elements in
// it are modified after this matcher is created.
PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
template <typename LhsContainer> operator Matcher<LhsContainer>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, use_UnorderedPointwise_with_hash_tables);
return Matcher<LhsContainer>( new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); }
template <typename LhsContainer> class Impl : public MatcherInterface<LhsContainer> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; typedef typename LhsView::const_reference LhsStlContainerReference; typedef typename LhsStlContainer::value_type LhsValue; // We pass the LHS value and the RHS value to the inner matcher by
// reference, as they may be expensive to copy. We must use tuple
// instead of pair here, as a pair cannot hold references (C++ 98,
// 20.2.2 [lib.pairs]).
typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
: mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), rhs_(rhs) {}
void DescribeTo(::std::ostream* os) const override { *os << "contains " << rhs_.size() << " values, where each value and its corresponding value in "; UniversalPrinter<RhsStlContainer>::Print(rhs_, os); *os << " "; mono_tuple_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "doesn't contain exactly " << rhs_.size() << " values, or contains a value x at some index i" << " where x and the i-th value of "; UniversalPrint(rhs_, os); *os << " "; mono_tuple_matcher_.DescribeNegationTo(os); }
bool MatchAndExplain(LhsContainer lhs, MatchResultListener* listener) const override { LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); const size_t actual_size = lhs_stl_container.size(); if (actual_size != rhs_.size()) { *listener << "which contains " << actual_size << " values"; return false; }
typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); typename RhsStlContainer::const_iterator right = rhs_.begin(); for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { if (listener->IsInterested()) { StringMatchResultListener inner_listener; // Create InnerMatcherArg as a temporarily object to avoid it outlives
// *left and *right. Dereference or the conversion to `const T&` may
// return temp objects, e.g for vector<bool>.
if (!mono_tuple_matcher_.MatchAndExplain( InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), ImplicitCast_<const RhsValue&>(*right)), &inner_listener)) { *listener << "where the value pair ("; UniversalPrint(*left, listener->stream()); *listener << ", "; UniversalPrint(*right, listener->stream()); *listener << ") at index #" << i << " don't match"; PrintIfNotEmpty(inner_listener.str(), listener->stream()); return false; } } else { if (!mono_tuple_matcher_.Matches( InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), ImplicitCast_<const RhsValue&>(*right)))) return false; } }
return true; }
private: const Matcher<InnerMatcherArg> mono_tuple_matcher_; const RhsStlContainer rhs_; };
private: const TupleMatcher tuple_matcher_; const RhsStlContainer rhs_; };
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
template <typename Container> class QuantifierMatcherImpl : public MatcherInterface<Container> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::value_type Element;
template <typename InnerMatcher> explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) : inner_matcher_( testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
// Checks whether:
// * All elements in the container match, if all_elements_should_match.
// * Any element in the container matches, if !all_elements_should_match.
bool MatchAndExplainImpl(bool all_elements_should_match, Container container, MatchResultListener* listener) const { StlContainerReference stl_container = View::ConstReference(container); size_t i = 0; for (typename StlContainer::const_iterator it = stl_container.begin(); it != stl_container.end(); ++it, ++i) { StringMatchResultListener inner_listener; const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
if (matches != all_elements_should_match) { *listener << "whose element #" << i << (matches ? " matches" : " doesn't match"); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return !all_elements_should_match; } } return all_elements_should_match; }
protected: const Matcher<const Element&> inner_matcher_; };
// Implements Contains(element_matcher) for the given argument type Container.
// Symmetric to EachMatcherImpl.
template <typename Container> class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { public: template <typename InnerMatcher> explicit ContainsMatcherImpl(InnerMatcher inner_matcher) : QuantifierMatcherImpl<Container>(inner_matcher) {}
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override { *os << "contains at least one element that "; this->inner_matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "doesn't contain any element that "; this->inner_matcher_.DescribeTo(os); }
bool MatchAndExplain(Container container, MatchResultListener* listener) const override { return this->MatchAndExplainImpl(false, container, listener); } };
// Implements Each(element_matcher) for the given argument type Container.
// Symmetric to ContainsMatcherImpl.
template <typename Container> class EachMatcherImpl : public QuantifierMatcherImpl<Container> { public: template <typename InnerMatcher> explicit EachMatcherImpl(InnerMatcher inner_matcher) : QuantifierMatcherImpl<Container>(inner_matcher) {}
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override { *os << "only contains elements that "; this->inner_matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "contains some element that "; this->inner_matcher_.DescribeNegationTo(os); }
bool MatchAndExplain(Container container, MatchResultListener* listener) const override { return this->MatchAndExplainImpl(true, container, listener); } };
// Implements polymorphic Contains(element_matcher).
template <typename M> class ContainsMatcher { public: explicit ContainsMatcher(M m) : inner_matcher_(m) {}
template <typename Container> operator Matcher<Container>() const { return Matcher<Container>( new ContainsMatcherImpl<const Container&>(inner_matcher_)); }
private: const M inner_matcher_; };
// Implements polymorphic Each(element_matcher).
template <typename M> class EachMatcher { public: explicit EachMatcher(M m) : inner_matcher_(m) {}
template <typename Container> operator Matcher<Container>() const { return Matcher<Container>( new EachMatcherImpl<const Container&>(inner_matcher_)); }
private: const M inner_matcher_; };
struct Rank1 {}; struct Rank0 : Rank1 {};
namespace pair_getters { using std::get; template <typename T> auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
return get<0>(x); } template <typename T> auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
return x.first; }
template <typename T> auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
return get<1>(x); } template <typename T> auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
return x.second; } } // namespace pair_getters
// Implements Key(inner_matcher) for the given argument pair type.
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename PairType> class KeyMatcherImpl : public MatcherInterface<PairType> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; typedef typename RawPairType::first_type KeyType;
template <typename InnerMatcher> explicit KeyMatcherImpl(InnerMatcher inner_matcher) : inner_matcher_( testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { }
// Returns true if and only if 'key_value.first' (the key) matches the inner
// matcher.
bool MatchAndExplain(PairType key_value, MatchResultListener* listener) const override { StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain( pair_getters::First(key_value, Rank0()), &inner_listener); const std::string explanation = inner_listener.str(); if (explanation != "") { *listener << "whose first field is a value " << explanation; } return match; }
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override { *os << "has a key that "; inner_matcher_.DescribeTo(os); }
// Describes what the negation of this matcher does.
void DescribeNegationTo(::std::ostream* os) const override { *os << "doesn't have a key that "; inner_matcher_.DescribeTo(os); }
private: const Matcher<const KeyType&> inner_matcher_; };
// Implements polymorphic Key(matcher_for_key).
template <typename M> class KeyMatcher { public: explicit KeyMatcher(M m) : matcher_for_key_(m) {}
template <typename PairType> operator Matcher<PairType>() const { return Matcher<PairType>( new KeyMatcherImpl<const PairType&>(matcher_for_key_)); }
private: const M matcher_for_key_; };
// Implements polymorphic Address(matcher_for_address).
template <typename InnerMatcher> class AddressMatcher { public: explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
template <typename Type> operator Matcher<Type>() const { // NOLINT
return Matcher<Type>(new Impl<const Type&>(matcher_)); }
private: // The monomorphic implementation that works for a particular object type.
template <typename Type> class Impl : public MatcherInterface<Type> { public: using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast<Address>(matcher)) {}
void DescribeTo(::std::ostream* os) const override { *os << "has address that "; matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "does not have address that "; matcher_.DescribeTo(os); }
bool MatchAndExplain(Type object, MatchResultListener* listener) const override { *listener << "which has address "; Address address = std::addressof(object); return MatchPrintAndExplain(address, matcher_, listener); }
private: const Matcher<Address> matcher_; }; const InnerMatcher matcher_; };
// Implements Pair(first_matcher, second_matcher) for the given argument pair
// type with its two matchers. See Pair() function below.
template <typename PairType> class PairMatcherImpl : public MatcherInterface<PairType> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; typedef typename RawPairType::first_type FirstType; typedef typename RawPairType::second_type SecondType;
template <typename FirstMatcher, typename SecondMatcher> PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) : first_matcher_( testing::SafeMatcherCast<const FirstType&>(first_matcher)), second_matcher_( testing::SafeMatcherCast<const SecondType&>(second_matcher)) { }
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override { *os << "has a first field that "; first_matcher_.DescribeTo(os); *os << ", and has a second field that "; second_matcher_.DescribeTo(os); }
// Describes what the negation of this matcher does.
void DescribeNegationTo(::std::ostream* os) const override { *os << "has a first field that "; first_matcher_.DescribeNegationTo(os); *os << ", or has a second field that "; second_matcher_.DescribeNegationTo(os); }
// Returns true if and only if 'a_pair.first' matches first_matcher and
// 'a_pair.second' matches second_matcher.
bool MatchAndExplain(PairType a_pair, MatchResultListener* listener) const override { if (!listener->IsInterested()) { // If the listener is not interested, we don't need to construct the
// explanation.
return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); } StringMatchResultListener first_inner_listener; if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), &first_inner_listener)) { *listener << "whose first field does not match"; PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); return false; } StringMatchResultListener second_inner_listener; if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), &second_inner_listener)) { *listener << "whose second field does not match"; PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); return false; } ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), listener); return true; }
private: void ExplainSuccess(const std::string& first_explanation, const std::string& second_explanation, MatchResultListener* listener) const { *listener << "whose both fields match"; if (first_explanation != "") { *listener << ", where the first field is a value " << first_explanation; } if (second_explanation != "") { *listener << ", "; if (first_explanation != "") { *listener << "and "; } else { *listener << "where "; } *listener << "the second field is a value " << second_explanation; } }
const Matcher<const FirstType&> first_matcher_; const Matcher<const SecondType&> second_matcher_; };
// Implements polymorphic Pair(first_matcher, second_matcher).
template <typename FirstMatcher, typename SecondMatcher> class PairMatcher { public: PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
template <typename PairType> operator Matcher<PairType> () const { return Matcher<PairType>( new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); }
private: const FirstMatcher first_matcher_; const SecondMatcher second_matcher_; };
template <typename T, size_t... I> auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) -> decltype(std::tie(get<I>(t)...)) { static_assert(std::tuple_size<T>::value == sizeof...(I), "Number of arguments doesn't match the number of fields."); return std::tie(get<I>(t)...); }
#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { const auto& [a] = t; return std::tie(a); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { const auto& [a, b] = t; return std::tie(a, b); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { const auto& [a, b, c] = t; return std::tie(a, b, c); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { const auto& [a, b, c, d] = t; return std::tie(a, b, c, d); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { const auto& [a, b, c, d, e] = t; return std::tie(a, b, c, d, e); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { const auto& [a, b, c, d, e, f] = t; return std::tie(a, b, c, d, e, f); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { const auto& [a, b, c, d, e, f, g] = t; return std::tie(a, b, c, d, e, f, g); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { const auto& [a, b, c, d, e, f, g, h] = t; return std::tie(a, b, c, d, e, f, g, h); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { const auto& [a, b, c, d, e, f, g, h, i] = t; return std::tie(a, b, c, d, e, f, g, h, i); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { const auto& [a, b, c, d, e, f, g, h, i, j] = t; return std::tie(a, b, c, d, e, f, g, h, i, j); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); } #endif // defined(__cpp_structured_bindings)
template <size_t I, typename T> auto UnpackStruct(const T& t) -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); }
// Helper function to do comma folding in C++11.
// The array ensures left-to-right order of evaluation.
// Usage: VariadicExpand({expr...});
template <typename T, size_t N> void VariadicExpand(const T (&)[N]) {}
template <typename Struct, typename StructSize> class FieldsAreMatcherImpl;
template <typename Struct, size_t... I> class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> : public MatcherInterface<Struct> { using UnpackedType = decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); using MatchersType = std::tuple< Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
public: template <typename Inner> explicit FieldsAreMatcherImpl(const Inner& matchers) : matchers_(testing::SafeMatcherCast< const typename std::tuple_element<I, UnpackedType>::type&>( std::get<I>(matchers))...) {}
void DescribeTo(::std::ostream* os) const override { const char* separator = ""; VariadicExpand( {(*os << separator << "has field #" << I << " that ", std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); }
void DescribeNegationTo(::std::ostream* os) const override { const char* separator = ""; VariadicExpand({(*os << separator << "has field #" << I << " that ", std::get<I>(matchers_).DescribeNegationTo(os), separator = ", or ")...}); }
bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); }
private: bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { if (!listener->IsInterested()) { // If the listener is not interested, we don't need to construct the
// explanation.
bool good = true; VariadicExpand({good = good && std::get<I>(matchers_).Matches( std::get<I>(tuple))...}); return good; }
size_t failed_pos = ~size_t{};
std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
VariadicExpand( {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( std::get<I>(tuple), &inner_listener[I]) ? failed_pos = I : 0 ...}); if (failed_pos != ~size_t{}) { *listener << "whose field #" << failed_pos << " does not match"; PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); return false; }
*listener << "whose all elements match"; const char* separator = ", where"; for (size_t index = 0; index < sizeof...(I); ++index) { const std::string str = inner_listener[index].str(); if (!str.empty()) { *listener << separator << " field #" << index << " is a value " << str; separator = ", and"; } }
return true; }
MatchersType matchers_; };
template <typename... Inner> class FieldsAreMatcher { public: explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
template <typename Struct> operator Matcher<Struct>() const { // NOLINT
return Matcher<Struct>( new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( matchers_)); }
private: std::tuple<Inner...> matchers_; };
// Implements ElementsAre() and ElementsAreArray().
template <typename Container> class ElementsAreMatcherImpl : public MatcherInterface<Container> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef internal::StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::value_type Element;
// Constructs the matcher from a sequence of element values or
// element matchers.
template <typename InputIter> ElementsAreMatcherImpl(InputIter first, InputIter last) { while (first != last) { matchers_.push_back(MatcherCast<const Element&>(*first++)); } }
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override { if (count() == 0) { *os << "is empty"; } else if (count() == 1) { *os << "has 1 element that "; matchers_[0].DescribeTo(os); } else { *os << "has " << Elements(count()) << " where\n"; for (size_t i = 0; i != count(); ++i) { *os << "element #" << i << " "; matchers_[i].DescribeTo(os); if (i + 1 < count()) { *os << ",\n"; } } } }
// Describes what the negation of this matcher does.
void DescribeNegationTo(::std::ostream* os) const override { if (count() == 0) { *os << "isn't empty"; return; }
*os << "doesn't have " << Elements(count()) << ", or\n"; for (size_t i = 0; i != count(); ++i) { *os << "element #" << i << " "; matchers_[i].DescribeNegationTo(os); if (i + 1 < count()) { *os << ", or\n"; } } }
bool MatchAndExplain(Container container, MatchResultListener* listener) const override { // To work with stream-like "containers", we must only walk
// through the elements in one pass.
const bool listener_interested = listener->IsInterested();
// explanations[i] is the explanation of the element at index i.
::std::vector<std::string> explanations(count()); StlContainerReference stl_container = View::ConstReference(container); typename StlContainer::const_iterator it = stl_container.begin(); size_t exam_pos = 0; bool mismatch_found = false; // Have we found a mismatched element yet?
// Go through the elements and matchers in pairs, until we reach
// the end of either the elements or the matchers, or until we find a
// mismatch.
for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { bool match; // Does the current element match the current matcher?
if (listener_interested) { StringMatchResultListener s; match = matchers_[exam_pos].MatchAndExplain(*it, &s); explanations[exam_pos] = s.str(); } else { match = matchers_[exam_pos].Matches(*it); }
if (!match) { mismatch_found = true; break; } } // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
// Find how many elements the actual container has. We avoid
// calling size() s.t. this code works for stream-like "containers"
// that don't define size().
size_t actual_count = exam_pos; for (; it != stl_container.end(); ++it) { ++actual_count; }
if (actual_count != count()) { // The element count doesn't match. If the container is empty,
// there's no need to explain anything as Google Mock already
// prints the empty container. Otherwise we just need to show
// how many elements there actually are.
if (listener_interested && (actual_count != 0)) { *listener << "which has " << Elements(actual_count); } return false; }
if (mismatch_found) { // The element count matches, but the exam_pos-th element doesn't match.
if (listener_interested) { *listener << "whose element #" << exam_pos << " doesn't match"; PrintIfNotEmpty(explanations[exam_pos], listener->stream()); } return false; }
// Every element matches its expectation. We need to explain why
// (the obvious ones can be skipped).
if (listener_interested) { bool reason_printed = false; for (size_t i = 0; i != count(); ++i) { const std::string& s = explanations[i]; if (!s.empty()) { if (reason_printed) { *listener << ",\nand "; } *listener << "whose element #" << i << " matches, " << s; reason_printed = true; } } } return true; }
private: static Message Elements(size_t count) { return Message() << count << (count == 1 ? " element" : " elements"); }
size_t count() const { return matchers_.size(); }
::std::vector<Matcher<const Element&> > matchers_; };
// Connectivity matrix of (elements X matchers), in element-major order.
// Initially, there are no edges.
// Use NextGraph() to iterate over all possible edge configurations.
// Use Randomize() to generate a random edge configuration.
class GTEST_API_ MatchMatrix { public: MatchMatrix(size_t num_elements, size_t num_matchers) : num_elements_(num_elements), num_matchers_(num_matchers), matched_(num_elements_* num_matchers_, 0) { }
size_t LhsSize() const { return num_elements_; } size_t RhsSize() const { return num_matchers_; } bool HasEdge(size_t ilhs, size_t irhs) const { return matched_[SpaceIndex(ilhs, irhs)] == 1; } void SetEdge(size_t ilhs, size_t irhs, bool b) { matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; }
// Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
// adds 1 to that number; returns false if incrementing the graph left it
// empty.
bool NextGraph();
void Randomize();
std::string DebugString() const;
private: size_t SpaceIndex(size_t ilhs, size_t irhs) const { return ilhs * num_matchers_ + irhs; }
size_t num_elements_; size_t num_matchers_;
// Each element is a char interpreted as bool. They are stored as a
// flattened array in lhs-major order, use 'SpaceIndex()' to translate
// a (ilhs, irhs) matrix coordinate into an offset.
::std::vector<char> matched_; };
typedef ::std::pair<size_t, size_t> ElementMatcherPair; typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
// Returns a maximum bipartite matching for the specified graph 'g'.
// The matching is represented as a vector of {element, matcher} pairs.
GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
struct UnorderedMatcherRequire { enum Flags { Superset = 1 << 0, Subset = 1 << 1, ExactMatch = Superset | Subset, }; };
// Untyped base class for implementing UnorderedElementsAre. By
// putting logic that's not specific to the element type here, we
// reduce binary bloat and increase compilation speed.
class GTEST_API_ UnorderedElementsAreMatcherImplBase { protected: explicit UnorderedElementsAreMatcherImplBase( UnorderedMatcherRequire::Flags matcher_flags) : match_flags_(matcher_flags) {}
// A vector of matcher describers, one for each element matcher.
// Does not own the describers (and thus can be used only when the
// element matchers are alive).
typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
// Describes this UnorderedElementsAre matcher.
void DescribeToImpl(::std::ostream* os) const;
// Describes the negation of this UnorderedElementsAre matcher.
void DescribeNegationToImpl(::std::ostream* os) const;
bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, const MatchMatrix& matrix, MatchResultListener* listener) const;
bool FindPairing(const MatchMatrix& matrix, MatchResultListener* listener) const;
MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
static Message Elements(size_t n) { return Message() << n << " element" << (n == 1 ? "" : "s"); }
UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
private: UnorderedMatcherRequire::Flags match_flags_; MatcherDescriberVec matcher_describers_; };
// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
// IsSupersetOf.
template <typename Container> class UnorderedElementsAreMatcherImpl : public MatcherInterface<Container>, public UnorderedElementsAreMatcherImplBase { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef internal::StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::const_iterator StlContainerConstIterator; typedef typename StlContainer::value_type Element;
template <typename InputIter> UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, InputIter first, InputIter last) : UnorderedElementsAreMatcherImplBase(matcher_flags) { for (; first != last; ++first) { matchers_.push_back(MatcherCast<const Element&>(*first)); } for (const auto& m : matchers_) { matcher_describers().push_back(m.GetDescriber()); } }
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override { return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); }
// Describes what the negation of this matcher does.
void DescribeNegationTo(::std::ostream* os) const override { return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); }
bool MatchAndExplain(Container container, MatchResultListener* listener) const override { StlContainerReference stl_container = View::ConstReference(container); ::std::vector<std::string> element_printouts; MatchMatrix matrix = AnalyzeElements(stl_container.begin(), stl_container.end(), &element_printouts, listener);
if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { return true; }
if (match_flags() == UnorderedMatcherRequire::ExactMatch) { if (matrix.LhsSize() != matrix.RhsSize()) { // The element count doesn't match. If the container is empty,
// there's no need to explain anything as Google Mock already
// prints the empty container. Otherwise we just need to show
// how many elements there actually are.
if (matrix.LhsSize() != 0 && listener->IsInterested()) { *listener << "which has " << Elements(matrix.LhsSize()); } return false; } }
return VerifyMatchMatrix(element_printouts, matrix, listener) && FindPairing(matrix, listener); }
private: template <typename ElementIter> MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, ::std::vector<std::string>* element_printouts, MatchResultListener* listener) const { element_printouts->clear(); ::std::vector<char> did_match; size_t num_elements = 0; DummyMatchResultListener dummy; for (; elem_first != elem_last; ++num_elements, ++elem_first) { if (listener->IsInterested()) { element_printouts->push_back(PrintToString(*elem_first)); } for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { did_match.push_back( matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); } }
MatchMatrix matrix(num_elements, matchers_.size()); ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); } } return matrix; }
::std::vector<Matcher<const Element&> > matchers_; };
// Functor for use in TransformTuple.
// Performs MatcherCast<Target> on an input argument of any type.
template <typename Target> struct CastAndAppendTransform { template <typename Arg> Matcher<Target> operator()(const Arg& a) const { return MatcherCast<Target>(a); } };
// Implements UnorderedElementsAre.
template <typename MatcherTuple> class UnorderedElementsAreMatcher { public: explicit UnorderedElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type View; typedef typename View::value_type Element; typedef ::std::vector<Matcher<const Element&> > MatcherVec; MatcherVec matchers; matchers.reserve(::std::tuple_size<MatcherTuple>::value); TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, ::std::back_inserter(matchers)); return Matcher<Container>( new UnorderedElementsAreMatcherImpl<const Container&>( UnorderedMatcherRequire::ExactMatch, matchers.begin(), matchers.end())); }
private: const MatcherTuple matchers_; };
// Implements ElementsAre.
template <typename MatcherTuple> class ElementsAreMatcher { public: explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
template <typename Container> operator Matcher<Container>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || ::std::tuple_size<MatcherTuple>::value < 2, use_UnorderedElementsAre_with_hash_tables);
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type View; typedef typename View::value_type Element; typedef ::std::vector<Matcher<const Element&> > MatcherVec; MatcherVec matchers; matchers.reserve(::std::tuple_size<MatcherTuple>::value); TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, ::std::back_inserter(matchers)); return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( matchers.begin(), matchers.end())); }
private: const MatcherTuple matchers_; };
// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
template <typename T> class UnorderedElementsAreArrayMatcher { public: template <typename Iter> UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, Iter first, Iter last) : match_flags_(match_flags), matchers_(first, last) {}
template <typename Container> operator Matcher<Container>() const { return Matcher<Container>( new UnorderedElementsAreMatcherImpl<const Container&>( match_flags_, matchers_.begin(), matchers_.end())); }
private: UnorderedMatcherRequire::Flags match_flags_; ::std::vector<T> matchers_; };
// Implements ElementsAreArray().
template <typename T> class ElementsAreArrayMatcher { public: template <typename Iter> ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
template <typename Container> operator Matcher<Container>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, use_UnorderedElementsAreArray_with_hash_tables);
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( matchers_.begin(), matchers_.end())); }
private: const ::std::vector<T> matchers_; };
// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
// second) is a polymorphic matcher that matches a value x if and only if
// tm matches tuple (x, second). Useful for implementing
// UnorderedPointwise() in terms of UnorderedElementsAreArray().
//
// BoundSecondMatcher is copyable and assignable, as we need to put
// instances of this class in a vector when implementing
// UnorderedPointwise().
template <typename Tuple2Matcher, typename Second> class BoundSecondMatcher { public: BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) : tuple2_matcher_(tm), second_value_(second) {}
BoundSecondMatcher(const BoundSecondMatcher& other) = default;
template <typename T> operator Matcher<T>() const { return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); }
// We have to define this for UnorderedPointwise() to compile in
// C++98 mode, as it puts BoundSecondMatcher instances in a vector,
// which requires the elements to be assignable in C++98. The
// compiler cannot generate the operator= for us, as Tuple2Matcher
// and Second may not be assignable.
//
// However, this should never be called, so the implementation just
// need to assert.
void operator=(const BoundSecondMatcher& /*rhs*/) { GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; }
private: template <typename T> class Impl : public MatcherInterface<T> { public: typedef ::std::tuple<T, Second> ArgTuple;
Impl(const Tuple2Matcher& tm, const Second& second) : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), second_value_(second) {}
void DescribeTo(::std::ostream* os) const override { *os << "and "; UniversalPrint(second_value_, os); *os << " "; mono_tuple2_matcher_.DescribeTo(os); }
bool MatchAndExplain(T x, MatchResultListener* listener) const override { return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), listener); }
private: const Matcher<const ArgTuple&> mono_tuple2_matcher_; const Second second_value_; };
const Tuple2Matcher tuple2_matcher_; const Second second_value_; };
// Given a 2-tuple matcher tm and a value second,
// MatcherBindSecond(tm, second) returns a matcher that matches a
// value x if and only if tm matches tuple (x, second). Useful for
// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
template <typename Tuple2Matcher, typename Second> BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( const Tuple2Matcher& tm, const Second& second) { return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); }
// Returns the description for a matcher defined using the MATCHER*()
// macro where the user-supplied description string is "", if
// 'negation' is false; otherwise returns the description of the
// negation of the matcher. 'param_values' contains a list of strings
// that are the print-out of the matcher's parameters.
GTEST_API_ std::string FormatMatcherDescription(bool negation, const char* matcher_name, const Strings& param_values);
// Implements a matcher that checks the value of a optional<> type variable.
template <typename ValueMatcher> class OptionalMatcher { public: explicit OptionalMatcher(const ValueMatcher& value_matcher) : value_matcher_(value_matcher) {}
template <typename Optional> operator Matcher<Optional>() const { return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); }
template <typename Optional> class Impl : public MatcherInterface<Optional> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; typedef typename OptionalView::value_type ValueType; explicit Impl(const ValueMatcher& value_matcher) : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
void DescribeTo(::std::ostream* os) const override { *os << "value "; value_matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "value "; value_matcher_.DescribeNegationTo(os); }
bool MatchAndExplain(Optional optional, MatchResultListener* listener) const override { if (!optional) { *listener << "which is not engaged"; return false; } const ValueType& value = *optional; StringMatchResultListener value_listener; const bool match = value_matcher_.MatchAndExplain(value, &value_listener); *listener << "whose value " << PrintToString(value) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(value_listener.str(), listener->stream()); return match; }
private: const Matcher<ValueType> value_matcher_; };
private: const ValueMatcher value_matcher_; };
namespace variant_matcher { // Overloads to allow VariantMatcher to do proper ADL lookup.
template <typename T> void holds_alternative() {} template <typename T> void get() {}
// Implements a matcher that checks the value of a variant<> type variable.
template <typename T> class VariantMatcher { public: explicit VariantMatcher(::testing::Matcher<const T&> matcher) : matcher_(std::move(matcher)) {}
template <typename Variant> bool MatchAndExplain(const Variant& value, ::testing::MatchResultListener* listener) const { using std::get; if (!listener->IsInterested()) { return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); }
if (!holds_alternative<T>(value)) { *listener << "whose value is not of type '" << GetTypeName() << "'"; return false; }
const T& elem = get<T>(value); StringMatchResultListener elem_listener; const bool match = matcher_.MatchAndExplain(elem, &elem_listener); *listener << "whose value " << PrintToString(elem) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(elem_listener.str(), listener->stream()); return match; }
void DescribeTo(std::ostream* os) const { *os << "is a variant<> with value of type '" << GetTypeName() << "' and the value "; matcher_.DescribeTo(os); }
void DescribeNegationTo(std::ostream* os) const { *os << "is a variant<> with value of type other than '" << GetTypeName() << "' or the value "; matcher_.DescribeNegationTo(os); }
private: static std::string GetTypeName() { #if GTEST_HAS_RTTI
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( return internal::GetTypeName<T>()); #endif
return "the element type"; }
const ::testing::Matcher<const T&> matcher_; };
} // namespace variant_matcher
namespace any_cast_matcher {
// Overloads to allow AnyCastMatcher to do proper ADL lookup.
template <typename T> void any_cast() {}
// Implements a matcher that any_casts the value.
template <typename T> class AnyCastMatcher { public: explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) : matcher_(matcher) {}
template <typename AnyType> bool MatchAndExplain(const AnyType& value, ::testing::MatchResultListener* listener) const { if (!listener->IsInterested()) { const T* ptr = any_cast<T>(&value); return ptr != nullptr && matcher_.Matches(*ptr); }
const T* elem = any_cast<T>(&value); if (elem == nullptr) { *listener << "whose value is not of type '" << GetTypeName() << "'"; return false; }
StringMatchResultListener elem_listener; const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); *listener << "whose value " << PrintToString(*elem) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(elem_listener.str(), listener->stream()); return match; }
void DescribeTo(std::ostream* os) const { *os << "is an 'any' type with value of type '" << GetTypeName() << "' and the value "; matcher_.DescribeTo(os); }
void DescribeNegationTo(std::ostream* os) const { *os << "is an 'any' type with value of type other than '" << GetTypeName() << "' or the value "; matcher_.DescribeNegationTo(os); }
private: static std::string GetTypeName() { #if GTEST_HAS_RTTI
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( return internal::GetTypeName<T>()); #endif
return "the element type"; }
const ::testing::Matcher<const T&> matcher_; };
} // namespace any_cast_matcher
// Implements the Args() matcher.
template <class ArgsTuple, size_t... k> class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { public: using RawArgsTuple = typename std::decay<ArgsTuple>::type; using SelectedArgs = std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
template <typename InnerMatcher> explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
bool MatchAndExplain(ArgsTuple args, MatchResultListener* listener) const override { // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
(void)args; const SelectedArgs& selected_args = std::forward_as_tuple(std::get<k>(args)...); if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
PrintIndices(listener->stream()); *listener << "are " << PrintToString(selected_args);
StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain(selected_args, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; }
void DescribeTo(::std::ostream* os) const override { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeTo(os); }
void DescribeNegationTo(::std::ostream* os) const override { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeNegationTo(os); }
private: // Prints the indices of the selected fields.
static void PrintIndices(::std::ostream* os) { *os << "whose fields ("; const char* sep = ""; // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
(void)sep; const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...}; (void)dummy; *os << ") "; }
MonomorphicInnerMatcher inner_matcher_; };
template <class InnerMatcher, size_t... k> class ArgsMatcher { public: explicit ArgsMatcher(InnerMatcher inner_matcher) : inner_matcher_(std::move(inner_matcher)) {}
template <typename ArgsTuple> operator Matcher<ArgsTuple>() const { // NOLINT
return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); }
private: InnerMatcher inner_matcher_; };
} // namespace internal
// ElementsAreArray(iterator_first, iterator_last)
// ElementsAreArray(pointer, count)
// ElementsAreArray(array)
// ElementsAreArray(container)
// ElementsAreArray({ e1, e2, ..., en })
//
// The ElementsAreArray() functions are like ElementsAre(...), except
// that they are given a homogeneous sequence rather than taking each
// element as a function argument. The sequence can be specified as an
// array, a pointer and count, a vector, an initializer list, or an
// STL iterator range. In each of these cases, the underlying sequence
// can be either a sequence of values or a sequence of matchers.
//
// All forms of ElementsAreArray() make a copy of the input matcher sequence.
template <typename Iter> inline internal::ElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> ElementsAreArray(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::ElementsAreArrayMatcher<T>(first, last); }
template <typename T> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( const T* pointer, size_t count) { return ElementsAreArray(pointer, pointer + count); }
template <typename T, size_t N> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( const T (&array)[N]) { return ElementsAreArray(array, N); }
template <typename Container> inline internal::ElementsAreArrayMatcher<typename Container::value_type> ElementsAreArray(const Container& container) { return ElementsAreArray(container.begin(), container.end()); }
template <typename T> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(::std::initializer_list<T> xs) { return ElementsAreArray(xs.begin(), xs.end()); }
// UnorderedElementsAreArray(iterator_first, iterator_last)
// UnorderedElementsAreArray(pointer, count)
// UnorderedElementsAreArray(array)
// UnorderedElementsAreArray(container)
// UnorderedElementsAreArray({ e1, e2, ..., en })
//
// UnorderedElementsAreArray() verifies that a bijective mapping onto a
// collection of matchers exists.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.
template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> UnorderedElementsAreArray(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::ExactMatch, first, last); }
template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(const T* pointer, size_t count) { return UnorderedElementsAreArray(pointer, pointer + count); }
template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(const T (&array)[N]) { return UnorderedElementsAreArray(array, N); }
template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> UnorderedElementsAreArray(const Container& container) { return UnorderedElementsAreArray(container.begin(), container.end()); }
template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(::std::initializer_list<T> xs) { return UnorderedElementsAreArray(xs.begin(), xs.end()); }
// _ is a matcher that matches anything of any type.
//
// This definition is fine as:
//
// 1. The C++ standard permits using the name _ in a namespace that
// is not the global namespace or ::std.
// 2. The AnythingMatcher class has no data member or constructor,
// so it's OK to create global variables of this type.
// 3. c-style has approved of using _ in this case.
const internal::AnythingMatcher _ = {}; // Creates a matcher that matches any value of the given type T.
template <typename T> inline Matcher<T> A() { return _; }
// Creates a matcher that matches any value of the given type T.
template <typename T> inline Matcher<T> An() { return _; }
template <typename T, typename M> Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( const M& value, std::false_type /* convertible_to_matcher */, std::false_type /* convertible_to_T */) { return Eq(value); }
// Creates a polymorphic matcher that matches any NULL pointer.
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { return MakePolymorphicMatcher(internal::IsNullMatcher()); }
// Creates a polymorphic matcher that matches any non-NULL pointer.
// This is convenient as Not(NULL) doesn't compile (the compiler
// thinks that that expression is comparing a pointer with an integer).
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { return MakePolymorphicMatcher(internal::NotNullMatcher()); }
// Creates a polymorphic matcher that matches any argument that
// references variable x.
template <typename T> inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
return internal::RefMatcher<T&>(x); }
// Creates a polymorphic matcher that matches any NaN floating point.
inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { return MakePolymorphicMatcher(internal::IsNanMatcher()); }
// Creates a matcher that matches any double argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { return internal::FloatingEqMatcher<double>(rhs, false); }
// Creates a matcher that matches any double argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { return internal::FloatingEqMatcher<double>(rhs, true); }
// Creates a matcher that matches any double argument approximately equal to
// rhs, up to the specified max absolute error bound, where two NANs are
// considered unequal. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<double> DoubleNear( double rhs, double max_abs_error) { return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); }
// Creates a matcher that matches any double argument approximately equal to
// rhs, up to the specified max absolute error bound, including NaN values when
// rhs is NaN. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( double rhs, double max_abs_error) { return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); }
// Creates a matcher that matches any float argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { return internal::FloatingEqMatcher<float>(rhs, false); }
// Creates a matcher that matches any float argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { return internal::FloatingEqMatcher<float>(rhs, true); }
// Creates a matcher that matches any float argument approximately equal to
// rhs, up to the specified max absolute error bound, where two NANs are
// considered unequal. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<float> FloatNear( float rhs, float max_abs_error) { return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); }
// Creates a matcher that matches any float argument approximately equal to
// rhs, up to the specified max absolute error bound, including NaN values when
// rhs is NaN. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( float rhs, float max_abs_error) { return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); }
// Creates a matcher that matches a pointer (raw or smart) that points
// to a value that matches inner_matcher.
template <typename InnerMatcher> inline internal::PointeeMatcher<InnerMatcher> Pointee( const InnerMatcher& inner_matcher) { return internal::PointeeMatcher<InnerMatcher>(inner_matcher); }
#if GTEST_HAS_RTTI
// Creates a matcher that matches a pointer or reference that matches
// inner_matcher when dynamic_cast<To> is applied.
// The result of dynamic_cast<To> is forwarded to the inner matcher.
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
// If To is a reference and the cast fails, this matcher returns false
// immediately.
template <typename To> inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > WhenDynamicCastTo(const Matcher<To>& inner_matcher) { return MakePolymorphicMatcher( internal::WhenDynamicCastToMatcher<To>(inner_matcher)); } #endif // GTEST_HAS_RTTI
// Creates a matcher that matches an object whose given field matches
// 'matcher'. For example,
// Field(&Foo::number, Ge(5))
// matches a Foo object x if and only if x.number >= 5.
template <typename Class, typename FieldType, typename FieldMatcher> inline PolymorphicMatcher< internal::FieldMatcher<Class, FieldType> > Field( FieldType Class::*field, const FieldMatcher& matcher) { return MakePolymorphicMatcher( internal::FieldMatcher<Class, FieldType>( field, MatcherCast<const FieldType&>(matcher))); // The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// Field(&Foo::bar, m)
// to compile where bar is an int32 and m is a matcher for int64.
}
// Same as Field() but also takes the name of the field to provide better error
// messages.
template <typename Class, typename FieldType, typename FieldMatcher> inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( const std::string& field_name, FieldType Class::*field, const FieldMatcher& matcher) { return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( field_name, field, MatcherCast<const FieldType&>(matcher))); }
// Creates a matcher that matches an object whose given property
// matches 'matcher'. For example,
// Property(&Foo::str, StartsWith("hi"))
// matches a Foo object x if and only if x.str() starts with "hi".
template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const> > Property(PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const>( property, MatcherCast<const PropertyType&>(matcher))); // The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// Property(&Foo::bar, m)
// to compile where bar() returns an int32 and m is a matcher for int64.
}
// Same as Property() above, but also takes the name of the property to provide
// better error messages.
template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const> > Property(const std::string& property_name, PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const>( property_name, property, MatcherCast<const PropertyType&>(matcher))); }
// The same as above but for reference-qualified member functions.
template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const &> > Property(PropertyType (Class::*property)() const &, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const&>( property, MatcherCast<const PropertyType&>(matcher))); }
// Three-argument form for reference-qualified member functions.
template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const &> > Property(const std::string& property_name, PropertyType (Class::*property)() const &, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const&>( property_name, property, MatcherCast<const PropertyType&>(matcher))); }
// Creates a matcher that matches an object if and only if the result of
// applying a callable to x matches 'matcher'. For example,
// ResultOf(f, StartsWith("hi"))
// matches a Foo object x if and only if f(x) starts with "hi".
// `callable` parameter can be a function, function pointer, or a functor. It is
// required to keep no state affecting the results of the calls on it and make
// no assumptions about how many calls will be made. Any state it keeps must be
// protected from the concurrent access.
template <typename Callable, typename InnerMatcher> internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( Callable callable, InnerMatcher matcher) { return internal::ResultOfMatcher<Callable, InnerMatcher>( std::move(callable), std::move(matcher)); }
// String matchers.
// Matches a string equal to str.
template <typename T = std::string> PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( const internal::StringLike<T>& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); }
// Matches a string not equal to str.
template <typename T = std::string> PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( const internal::StringLike<T>& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); }
// Matches a string equal to str, ignoring case.
template <typename T = std::string> PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( const internal::StringLike<T>& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); }
// Matches a string not equal to str, ignoring case.
template <typename T = std::string> PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( const internal::StringLike<T>& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( std::string(str), false, false)); }
// Creates a matcher that matches any string, std::string, or C string
// that contains the given substring.
template <typename T = std::string> PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( const internal::StringLike<T>& substring) { return MakePolymorphicMatcher( internal::HasSubstrMatcher<std::string>(std::string(substring))); }
// Matches a string that starts with 'prefix' (case-sensitive).
template <typename T = std::string> PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( const internal::StringLike<T>& prefix) { return MakePolymorphicMatcher( internal::StartsWithMatcher<std::string>(std::string(prefix))); }
// Matches a string that ends with 'suffix' (case-sensitive).
template <typename T = std::string> PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( const internal::StringLike<T>& suffix) { return MakePolymorphicMatcher( internal::EndsWithMatcher<std::string>(std::string(suffix))); }
#if GTEST_HAS_STD_WSTRING
// Wide string matchers.
// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, true, true)); }
// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, false, true)); }
// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrCaseEq(const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, true, false)); }
// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrCaseNe(const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, false, false)); }
// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( const std::wstring& substring) { return MakePolymorphicMatcher( internal::HasSubstrMatcher<std::wstring>(substring)); }
// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > StartsWith(const std::wstring& prefix) { return MakePolymorphicMatcher( internal::StartsWithMatcher<std::wstring>(prefix)); }
// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( const std::wstring& suffix) { return MakePolymorphicMatcher( internal::EndsWithMatcher<std::wstring>(suffix)); }
#endif // GTEST_HAS_STD_WSTRING
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field == the second field.
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field >= the second field.
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field > the second field.
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field <= the second field.
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field < the second field.
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field != the second field.
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatEq(first field) matches the second field.
inline internal::FloatingEq2Matcher<float> FloatEq() { return internal::FloatingEq2Matcher<float>(); }
// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleEq(first field) matches the second field.
inline internal::FloatingEq2Matcher<double> DoubleEq() { return internal::FloatingEq2Matcher<double>(); }
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatEq(first field) matches the second field with NaN equality.
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { return internal::FloatingEq2Matcher<float>(true); }
// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleEq(first field) matches the second field with NaN equality.
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { return internal::FloatingEq2Matcher<double>(true); }
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatNear(first field, max_abs_error) matches the second field.
inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { return internal::FloatingEq2Matcher<float>(max_abs_error); }
// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleNear(first field, max_abs_error) matches the second field.
inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { return internal::FloatingEq2Matcher<double>(max_abs_error); }
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatNear(first field, max_abs_error) matches the second field with NaN
// equality.
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( float max_abs_error) { return internal::FloatingEq2Matcher<float>(max_abs_error, true); }
// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleNear(first field, max_abs_error) matches the second field with NaN
// equality.
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( double max_abs_error) { return internal::FloatingEq2Matcher<double>(max_abs_error, true); }
// Creates a matcher that matches any value of type T that m doesn't
// match.
template <typename InnerMatcher> inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { return internal::NotMatcher<InnerMatcher>(m); }
// Returns a matcher that matches anything that satisfies the given
// predicate. The predicate can be any unary function or functor
// whose return type can be implicitly converted to bool.
template <typename Predicate> inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > Truly(Predicate pred) { return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); }
// Returns a matcher that matches the container size. The container must
// support both size() and size_type which all STL-like containers provide.
// Note that the parameter 'size' can be a value of type size_type as well as
// matcher. For instance:
// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
template <typename SizeMatcher> inline internal::SizeIsMatcher<SizeMatcher> SizeIs(const SizeMatcher& size_matcher) { return internal::SizeIsMatcher<SizeMatcher>(size_matcher); }
// Returns a matcher that matches the distance between the container's begin()
// iterator and its end() iterator, i.e. the size of the container. This matcher
// can be used instead of SizeIs with containers such as std::forward_list which
// do not implement size(). The container must provide const_iterator (with
// valid iterator_traits), begin() and end().
template <typename DistanceMatcher> inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); }
// Returns a matcher that matches an equal container.
// This matcher behaves like Eq(), but in the event of mismatch lists the
// values that are included in one container but not the other. (Duplicate
// values and order differences are not explained.)
template <typename Container> inline PolymorphicMatcher<internal::ContainerEqMatcher< typename std::remove_const<Container>::type>> ContainerEq(const Container& rhs) { return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); }
// Returns a matcher that matches a container that, when sorted using
// the given comparator, matches container_matcher.
template <typename Comparator, typename ContainerMatcher> inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(const Comparator& comparator, const ContainerMatcher& container_matcher) { return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( comparator, container_matcher); }
// Returns a matcher that matches a container that, when sorted using
// the < operator, matches container_matcher.
template <typename ContainerMatcher> inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> WhenSorted(const ContainerMatcher& container_matcher) { return internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( internal::LessComparator(), container_matcher); }
// Matches an STL-style container or a native array that contains the
// same number of elements as in rhs, where its i-th element and rhs's
// i-th element (as a pair) satisfy the given pair matcher, for all i.
// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
// T1&, const T2&> >, where T1 and T2 are the types of elements in the
// LHS container and the RHS container respectively.
template <typename TupleMatcher, typename Container> inline internal::PointwiseMatcher<TupleMatcher, typename std::remove_const<Container>::type> Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, rhs); }
// Supports the Pointwise(m, {a, b, c}) syntax.
template <typename TupleMatcher, typename T> inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { return Pointwise(tuple_matcher, std::vector<T>(rhs)); }
// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
// container or a native array that contains the same number of
// elements as in rhs, where in some permutation of the container, its
// i-th element and rhs's i-th element (as a pair) satisfy the given
// pair matcher, for all i. Tuple2Matcher must be able to be safely
// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
// the types of elements in the LHS container and the RHS container
// respectively.
//
// This is like Pointwise(pair_matcher, rhs), except that the element
// order doesn't matter.
template <typename Tuple2Matcher, typename RhsContainer> inline internal::UnorderedElementsAreArrayMatcher< typename internal::BoundSecondMatcher< Tuple2Matcher, typename internal::StlContainerView< typename std::remove_const<RhsContainer>::type>::type::value_type>> UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, const RhsContainer& rhs_container) { // RhsView allows the same code to handle RhsContainer being a
// STL-style container and it being a native C-style array.
typedef typename internal::StlContainerView<RhsContainer> RhsView; typedef typename RhsView::type RhsStlContainer; typedef typename RhsStlContainer::value_type Second; const RhsStlContainer& rhs_stl_container = RhsView::ConstReference(rhs_container);
// Create a matcher for each element in rhs_container.
::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); it != rhs_stl_container.end(); ++it) { matchers.push_back( internal::MatcherBindSecond(tuple2_matcher, *it)); }
// Delegate the work to UnorderedElementsAreArray().
return UnorderedElementsAreArray(matchers); }
// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
template <typename Tuple2Matcher, typename T> inline internal::UnorderedElementsAreArrayMatcher< typename internal::BoundSecondMatcher<Tuple2Matcher, T> > UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, std::initializer_list<T> rhs) { return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); }
// Matches an STL-style container or a native array that contains at
// least one element matching the given value or matcher.
//
// Examples:
// ::std::set<int> page_ids;
// page_ids.insert(3);
// page_ids.insert(1);
// EXPECT_THAT(page_ids, Contains(1));
// EXPECT_THAT(page_ids, Contains(Gt(2)));
// EXPECT_THAT(page_ids, Not(Contains(4)));
//
// ::std::map<int, size_t> page_lengths;
// page_lengths[1] = 100;
// EXPECT_THAT(page_lengths,
// Contains(::std::pair<const int, size_t>(1, 100)));
//
// const char* user_ids[] = { "joe", "mike", "tom" };
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
template <typename M> inline internal::ContainsMatcher<M> Contains(M matcher) { return internal::ContainsMatcher<M>(matcher); }
// IsSupersetOf(iterator_first, iterator_last)
// IsSupersetOf(pointer, count)
// IsSupersetOf(array)
// IsSupersetOf(container)
// IsSupersetOf({e1, e2, ..., en})
//
// IsSupersetOf() verifies that a surjective partial mapping onto a collection
// of matchers exists. In other words, a container matches
// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
// {y1, ..., yn} of some of the container's elements where y1 matches e1,
// ..., and yn matches en. Obviously, the size of the container must be >= n
// in order to have a match. Examples:
//
// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
// 1 matches Ne(0).
// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
// both Eq(1) and Lt(2). The reason is that different matchers must be used
// for elements in different slots of the container.
// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
// Eq(1) and (the second) 1 matches Lt(2).
// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
// Gt(1) and 3 matches (the second) Gt(1).
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.
template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> IsSupersetOf(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::Superset, first, last); }
template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( const T* pointer, size_t count) { return IsSupersetOf(pointer, pointer + count); }
template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( const T (&array)[N]) { return IsSupersetOf(array, N); }
template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> IsSupersetOf(const Container& container) { return IsSupersetOf(container.begin(), container.end()); }
template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( ::std::initializer_list<T> xs) { return IsSupersetOf(xs.begin(), xs.end()); }
// IsSubsetOf(iterator_first, iterator_last)
// IsSubsetOf(pointer, count)
// IsSubsetOf(array)
// IsSubsetOf(container)
// IsSubsetOf({e1, e2, ..., en})
//
// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
// only if there is a subset of matchers {m1, ..., mk} which would match the
// container using UnorderedElementsAre. Obviously, the size of the container
// must be <= n in order to have a match. Examples:
//
// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
// matches Lt(0).
// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
// match Gt(0). The reason is that different matchers must be used for
// elements in different slots of the container.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.
template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> IsSubsetOf(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::Subset, first, last); }
template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( const T* pointer, size_t count) { return IsSubsetOf(pointer, pointer + count); }
template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( const T (&array)[N]) { return IsSubsetOf(array, N); }
template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> IsSubsetOf(const Container& container) { return IsSubsetOf(container.begin(), container.end()); }
template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( ::std::initializer_list<T> xs) { return IsSubsetOf(xs.begin(), xs.end()); }
// Matches an STL-style container or a native array that contains only
// elements matching the given value or matcher.
//
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
// the messages are different.
//
// Examples:
// ::std::set<int> page_ids;
// // Each(m) matches an empty container, regardless of what m is.
// EXPECT_THAT(page_ids, Each(Eq(1)));
// EXPECT_THAT(page_ids, Each(Eq(77)));
//
// page_ids.insert(3);
// EXPECT_THAT(page_ids, Each(Gt(0)));
// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
// page_ids.insert(1);
// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
//
// ::std::map<int, size_t> page_lengths;
// page_lengths[1] = 100;
// page_lengths[2] = 200;
// page_lengths[3] = 300;
// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
//
// const char* user_ids[] = { "joe", "mike", "tom" };
// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
template <typename M> inline internal::EachMatcher<M> Each(M matcher) { return internal::EachMatcher<M>(matcher); }
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename M> inline internal::KeyMatcher<M> Key(M inner_matcher) { return internal::KeyMatcher<M>(inner_matcher); }
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
// matches first_matcher and whose 'second' field matches second_matcher. For
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
// to match a std::map<int, string> that contains exactly one element whose key
// is >= 5 and whose value equals "foo".
template <typename FirstMatcher, typename SecondMatcher> inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { return internal::PairMatcher<FirstMatcher, SecondMatcher>( first_matcher, second_matcher); }
namespace no_adl { // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
// These include those that support `get<I>(obj)`, and when structured bindings
// are enabled any class that supports them.
// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
template <typename... M> internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( M&&... matchers) { return internal::FieldsAreMatcher<typename std::decay<M>::type...>( std::forward<M>(matchers)...); }
// Creates a matcher that matches a pointer (raw or smart) that matches
// inner_matcher.
template <typename InnerMatcher> inline internal::PointerMatcher<InnerMatcher> Pointer( const InnerMatcher& inner_matcher) { return internal::PointerMatcher<InnerMatcher>(inner_matcher); }
// Creates a matcher that matches an object that has an address that matches
// inner_matcher.
template <typename InnerMatcher> inline internal::AddressMatcher<InnerMatcher> Address( const InnerMatcher& inner_matcher) { return internal::AddressMatcher<InnerMatcher>(inner_matcher); } } // namespace no_adl
// Returns a predicate that is satisfied by anything that matches the
// given matcher.
template <typename M> inline internal::MatcherAsPredicate<M> Matches(M matcher) { return internal::MatcherAsPredicate<M>(matcher); }
// Returns true if and only if the value matches the matcher.
template <typename T, typename M> inline bool Value(const T& value, M matcher) { return testing::Matches(matcher)(value); }
// Matches the value against the given matcher and explains the match
// result to listener.
template <typename T, typename M> inline bool ExplainMatchResult( M matcher, const T& value, MatchResultListener* listener) { return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); }
// Returns a string representation of the given matcher. Useful for description
// strings of matchers defined using MATCHER_P* macros that accept matchers as
// their arguments. For example:
//
// MATCHER_P(XAndYThat, matcher,
// "X that " + DescribeMatcher<int>(matcher, negation) +
// " and Y that " + DescribeMatcher<double>(matcher, negation)) {
// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
// ExplainMatchResult(matcher, arg.y(), result_listener);
// }
template <typename T, typename M> std::string DescribeMatcher(const M& matcher, bool negation = false) { ::std::stringstream ss; Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); if (negation) { monomorphic_matcher.DescribeNegationTo(&ss); } else { monomorphic_matcher.DescribeTo(&ss); } return ss.str(); }
template <typename... Args> internal::ElementsAreMatcher< std::tuple<typename std::decay<const Args&>::type...>> ElementsAre(const Args&... matchers) { return internal::ElementsAreMatcher< std::tuple<typename std::decay<const Args&>::type...>>( std::make_tuple(matchers...)); }
template <typename... Args> internal::UnorderedElementsAreMatcher< std::tuple<typename std::decay<const Args&>::type...>> UnorderedElementsAre(const Args&... matchers) { return internal::UnorderedElementsAreMatcher< std::tuple<typename std::decay<const Args&>::type...>>( std::make_tuple(matchers...)); }
// Define variadic matcher versions.
template <typename... Args> internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( const Args&... matchers) { return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( matchers...); }
template <typename... Args> internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( const Args&... matchers) { return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( matchers...); }
// AnyOfArray(array)
// AnyOfArray(pointer, count)
// AnyOfArray(container)
// AnyOfArray({ e1, e2, ..., en })
// AnyOfArray(iterator_first, iterator_last)
//
// AnyOfArray() verifies whether a given value matches any member of a
// collection of matchers.
//
// AllOfArray(array)
// AllOfArray(pointer, count)
// AllOfArray(container)
// AllOfArray({ e1, e2, ..., en })
// AllOfArray(iterator_first, iterator_last)
//
// AllOfArray() verifies whether a given value matches all members of a
// collection of matchers.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.
template <typename Iter> inline internal::AnyOfArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> AnyOfArray(Iter first, Iter last) { return internal::AnyOfArrayMatcher< typename ::std::iterator_traits<Iter>::value_type>(first, last); }
template <typename Iter> inline internal::AllOfArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> AllOfArray(Iter first, Iter last) { return internal::AllOfArrayMatcher< typename ::std::iterator_traits<Iter>::value_type>(first, last); }
template <typename T> inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { return AnyOfArray(ptr, ptr + count); }
template <typename T> inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { return AllOfArray(ptr, ptr + count); }
template <typename T, size_t N> inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { return AnyOfArray(array, N); }
template <typename T, size_t N> inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { return AllOfArray(array, N); }
template <typename Container> inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( const Container& container) { return AnyOfArray(container.begin(), container.end()); }
template <typename Container> inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( const Container& container) { return AllOfArray(container.begin(), container.end()); }
template <typename T> inline internal::AnyOfArrayMatcher<T> AnyOfArray( ::std::initializer_list<T> xs) { return AnyOfArray(xs.begin(), xs.end()); }
template <typename T> inline internal::AllOfArrayMatcher<T> AllOfArray( ::std::initializer_list<T> xs) { return AllOfArray(xs.begin(), xs.end()); }
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
// fields of it matches a_matcher. C++ doesn't support default
// arguments for function templates, so we have to overload it.
template <size_t... k, typename InnerMatcher> internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( InnerMatcher&& matcher) { return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( std::forward<InnerMatcher>(matcher)); }
// AllArgs(m) is a synonym of m. This is useful in
//
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
//
// which is easier to read than
//
// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
template <typename InnerMatcher> inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
// Returns a matcher that matches the value of an optional<> type variable.
// The matcher implementation only uses '!arg' and requires that the optional<>
// type has a 'value_type' member type and that '*arg' is of type 'value_type'
// and is printable using 'PrintToString'. It is compatible with
// std::optional/std::experimental::optional.
// Note that to compare an optional type variable against nullopt you should
// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
// optional value contains an optional itself.
template <typename ValueMatcher> inline internal::OptionalMatcher<ValueMatcher> Optional( const ValueMatcher& value_matcher) { return internal::OptionalMatcher<ValueMatcher>(value_matcher); }
// Returns a matcher that matches the value of a absl::any type variable.
template <typename T> PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( const Matcher<const T&>& matcher) { return MakePolymorphicMatcher( internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); }
// Returns a matcher that matches the value of a variant<> type variable.
// The matcher implementation uses ADL to find the holds_alternative and get
// functions.
// It is compatible with std::variant.
template <typename T> PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( const Matcher<const T&>& matcher) { return MakePolymorphicMatcher( internal::variant_matcher::VariantMatcher<T>(matcher)); }
#if GTEST_HAS_EXCEPTIONS
// Anything inside the `internal` namespace is internal to the implementation
// and must not be used in user code!
namespace internal {
class WithWhatMatcherImpl { public: WithWhatMatcherImpl(Matcher<std::string> matcher) : matcher_(std::move(matcher)) {}
void DescribeTo(std::ostream* os) const { *os << "contains .what() that "; matcher_.DescribeTo(os); }
void DescribeNegationTo(std::ostream* os) const { *os << "contains .what() that does not "; matcher_.DescribeTo(os); }
template <typename Err> bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { *listener << "which contains .what() that "; return matcher_.MatchAndExplain(err.what(), listener); }
private: const Matcher<std::string> matcher_; };
inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( Matcher<std::string> m) { return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); }
template <typename Err> class ExceptionMatcherImpl { class NeverThrown { public: const char* what() const noexcept { return "this exception should never be thrown"; } };
// If the matchee raises an exception of a wrong type, we'd like to
// catch it and print its message and type. To do that, we add an additional
// catch clause:
//
// try { ... }
// catch (const Err&) { /* an expected exception */ }
// catch (const std::exception&) { /* exception of a wrong type */ }
//
// However, if the `Err` itself is `std::exception`, we'd end up with two
// identical `catch` clauses:
//
// try { ... }
// catch (const std::exception&) { /* an expected exception */ }
// catch (const std::exception&) { /* exception of a wrong type */ }
//
// This can cause a warning or an error in some compilers. To resolve
// the issue, we use a fake error type whenever `Err` is `std::exception`:
//
// try { ... }
// catch (const std::exception&) { /* an expected exception */ }
// catch (const NeverThrown&) { /* exception of a wrong type */ }
using DefaultExceptionType = typename std::conditional< std::is_same<typename std::remove_cv< typename std::remove_reference<Err>::type>::type, std::exception>::value, const NeverThrown&, const std::exception&>::type;
public: ExceptionMatcherImpl(Matcher<const Err&> matcher) : matcher_(std::move(matcher)) {}
void DescribeTo(std::ostream* os) const { *os << "throws an exception which is a " << GetTypeName<Err>(); *os << " which "; matcher_.DescribeTo(os); }
void DescribeNegationTo(std::ostream* os) const { *os << "throws an exception which is not a " << GetTypeName<Err>(); *os << " which "; matcher_.DescribeNegationTo(os); }
template <typename T> bool MatchAndExplain(T&& x, MatchResultListener* listener) const { try { (void)(std::forward<T>(x)()); } catch (const Err& err) { *listener << "throws an exception which is a " << GetTypeName<Err>(); *listener << " "; return matcher_.MatchAndExplain(err, listener); } catch (DefaultExceptionType err) { #if GTEST_HAS_RTTI
*listener << "throws an exception of type " << GetTypeName(typeid(err)); *listener << " "; #else
*listener << "throws an std::exception-derived type "; #endif
*listener << "with description \"" << err.what() << "\""; return false; } catch (...) { *listener << "throws an exception of an unknown type"; return false; }
*listener << "does not throw any exception"; return false; }
private: const Matcher<const Err&> matcher_; };
} // namespace internal
// Throws()
// Throws(exceptionMatcher)
// ThrowsMessage(messageMatcher)
//
// This matcher accepts a callable and verifies that when invoked, it throws
// an exception with the given type and properties.
//
// Examples:
//
// EXPECT_THAT(
// []() { throw std::runtime_error("message"); },
// Throws<std::runtime_error>());
//
// EXPECT_THAT(
// []() { throw std::runtime_error("message"); },
// ThrowsMessage<std::runtime_error>(HasSubstr("message")));
//
// EXPECT_THAT(
// []() { throw std::runtime_error("message"); },
// Throws<std::runtime_error>(
// Property(&std::runtime_error::what, HasSubstr("message"))));
template <typename Err> PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { return MakePolymorphicMatcher( internal::ExceptionMatcherImpl<Err>(A<const Err&>())); }
template <typename Err, typename ExceptionMatcher> PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( const ExceptionMatcher& exception_matcher) { // Using matcher cast allows users to pass a matcher of a more broad type.
// For example user may want to pass Matcher<std::exception>
// to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( SafeMatcherCast<const Err&>(exception_matcher))); }
template <typename Err, typename MessageMatcher> PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( MessageMatcher&& message_matcher) { static_assert(std::is_base_of<std::exception, Err>::value, "expected an std::exception-derived type"); return Throws<Err>(internal::WithWhat( MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); }
#endif // GTEST_HAS_EXCEPTIONS
// These macros allow using matchers to check values in Google Test
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
// succeed if and only if the value matches the matcher. If the assertion
// fails, the value and the description of the matcher will be printed.
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
// MATCHER* macroses itself are listed below.
#define MATCHER(name, description) \
class name##Matcher \ : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ public: \ template <typename arg_type> \ class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ public: \ gmock_Impl() {} \ bool MatchAndExplain( \ const arg_type& arg, \ ::testing::MatchResultListener* result_listener) const override; \ void DescribeTo(::std::ostream* gmock_os) const override { \ *gmock_os << FormatDescription(false); \ } \ void DescribeNegationTo(::std::ostream* gmock_os) const override { \ *gmock_os << FormatDescription(true); \ } \ \ private: \ ::std::string FormatDescription(bool negation) const { \ ::std::string gmock_description = (description); \ if (!gmock_description.empty()) { \ return gmock_description; \ } \ return ::testing::internal::FormatMatcherDescription(negation, #name, \ {}); \ } \ }; \ }; \ GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \ template <typename arg_type> \ bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ const arg_type& arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ const
#define MATCHER_P(name, p0, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0)) #define MATCHER_P2(name, p0, p1, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1)) #define MATCHER_P3(name, p0, p1, p2, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2)) #define MATCHER_P4(name, p0, p1, p2, p3, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3)) #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ (p0, p1, p2, p3, p4)) #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ (p0, p1, p2, p3, p4, p5)) #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ (p0, p1, p2, p3, p4, p5, p6)) #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ (p0, p1, p2, p3, p4, p5, p6, p7)) #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ (p0, p1, p2, p3, p4, p5, p6, p7, p8)) #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
#define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ class full_name : public ::testing::internal::MatcherBaseImpl< \ full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ public: \ using full_name::MatcherBaseImpl::MatcherBaseImpl; \ template <typename arg_type> \ class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ public: \ explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ bool MatchAndExplain( \ const arg_type& arg, \ ::testing::MatchResultListener* result_listener) const override; \ void DescribeTo(::std::ostream* gmock_os) const override { \ *gmock_os << FormatDescription(false); \ } \ void DescribeNegationTo(::std::ostream* gmock_os) const override { \ *gmock_os << FormatDescription(true); \ } \ GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ \ private: \ ::std::string FormatDescription(bool negation) const { \ ::std::string gmock_description = (description); \ if (!gmock_description.empty()) { \ return gmock_description; \ } \ return ::testing::internal::FormatMatcherDescription( \ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ } \ }; \ }; \ template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ } \ template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ template <typename arg_type> \ bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ arg_type>::MatchAndExplain(const arg_type& arg, \ ::testing::MatchResultListener* \ result_listener GTEST_ATTRIBUTE_UNUSED_) \ const
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
GMOCK_PP_TAIL( \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
, typename arg##_type
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
, arg##_type
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
, arg##_type gmock_p##i
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
, arg(::std::forward<arg##_type>(gmock_p##i))
#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
const arg##_type arg;
#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
, gmock_p##i
// To prevent ADL on certain functions we put them on a separate namespace.
using namespace no_adl; // NOLINT
} // namespace testing
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
// Include any custom callback matchers added by the local installation.
// We must include this header at the end to make sure it can use the
// declarations from this file.
#include "gmock/internal/custom/gmock-matchers.h"
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|