|
|
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// The ACTION* family of macros can be used in a namespace scope to
// define custom actions easily. The syntax:
//
// ACTION(name) { statements; }
//
// will define an action with the given name that executes the
// statements. The value returned by the statements will be used as
// the return value of the action. Inside the statements, you can
// refer to the K-th (0-based) argument of the mock function by
// 'argK', and refer to its type by 'argK_type'. For example:
//
// ACTION(IncrementArg1) {
// arg1_type temp = arg1;
// return ++(*temp);
// }
//
// allows you to write
//
// ...WillOnce(IncrementArg1());
//
// You can also refer to the entire argument tuple and its type by
// 'args' and 'args_type', and refer to the mock function type and its
// return type by 'function_type' and 'return_type'.
//
// Note that you don't need to specify the types of the mock function
// arguments. However rest assured that your code is still type-safe:
// you'll get a compiler error if *arg1 doesn't support the ++
// operator, or if the type of ++(*arg1) isn't compatible with the
// mock function's return type, for example.
//
// Sometimes you'll want to parameterize the action. For that you can use
// another macro:
//
// ACTION_P(name, param_name) { statements; }
//
// For example:
//
// ACTION_P(Add, n) { return arg0 + n; }
//
// will allow you to write:
//
// ...WillOnce(Add(5));
//
// Note that you don't need to provide the type of the parameter
// either. If you need to reference the type of a parameter named
// 'foo', you can write 'foo_type'. For example, in the body of
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
// of 'n'.
//
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
// multi-parameter actions.
//
// For the purpose of typing, you can view
//
// ACTION_Pk(Foo, p1, ..., pk) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
//
// In particular, you can provide the template type arguments
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
// although usually you can rely on the compiler to infer the types
// for you automatically. You can assign the result of expression
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
// pk_type>. This can be useful when composing actions.
//
// You can also overload actions with different numbers of parameters:
//
// ACTION_P(Plus, a) { ... }
// ACTION_P2(Plus, a, b) { ... }
//
// While it's tempting to always use the ACTION* macros when defining
// a new action, you should also consider implementing ActionInterface
// or using MakePolymorphicAction() instead, especially if you need to
// use the action a lot. While these approaches require more work,
// they give you more control on the types of the mock function
// arguments and the action parameters, which in general leads to
// better compiler error messages that pay off in the long run. They
// also allow overloading actions based on parameter types (as opposed
// to just based on the number of parameters).
//
// CAVEAT:
//
// ACTION*() can only be used in a namespace scope as templates cannot be
// declared inside of a local class.
// Users can, however, define any local functors (e.g. a lambda) that
// can be used as actions.
//
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'ACTION' on
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#ifndef _WIN32_WCE
# include <errno.h>
#endif
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"
#include "gmock/internal/gmock-pp.h"
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif
namespace testing {
// To implement an action Foo, define:
// 1. a class FooAction that implements the ActionInterface interface, and
// 2. a factory function that creates an Action object from a
// const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers. It also eases ownership
// management as Action objects can now be copied like plain values.
namespace internal {
// BuiltInDefaultValueGetter<T, true>::Get() returns a
// default-constructed T value. BuiltInDefaultValueGetter<T,
// false>::Get() crashes with an error.
//
// This primary template is used when kDefaultConstructible is true.
template <typename T, bool kDefaultConstructible> struct BuiltInDefaultValueGetter { static T Get() { return T(); } }; template <typename T> struct BuiltInDefaultValueGetter<T, false> { static T Get() { Assert(false, __FILE__, __LINE__, "Default action undefined for the function return type."); return internal::Invalid<T>(); // The above statement will never be reached, but is required in
// order for this function to compile.
} };
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
// for type T, which is NULL when T is a raw pointer type, 0 when T is
// a numeric type, false when T is bool, or "" when T is string or
// std::string. In addition, in C++11 and above, it turns a
// default-constructed T value if T is default constructible. For any
// other type T, the built-in default T value is undefined, and the
// function will abort the process.
template <typename T> class BuiltInDefaultValue { public: // This function returns true if and only if type T has a built-in default
// value.
static bool Exists() { return ::std::is_default_constructible<T>::value; }
static T Get() { return BuiltInDefaultValueGetter< T, ::std::is_default_constructible<T>::value>::Get(); } };
// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T> class BuiltInDefaultValue<const T> { public: static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } static T Get() { return BuiltInDefaultValue<T>::Get(); } };
// This partial specialization defines the default values for pointer
// types.
template <typename T> class BuiltInDefaultValue<T*> { public: static bool Exists() { return true; } static T* Get() { return nullptr; } };
// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
template <> \ class BuiltInDefaultValue<type> { \ public: \ static bool Exists() { return true; } \ static type Get() { return value; } \ }
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
// Simple two-arg form of std::disjunction.
template <typename P, typename Q> using disjunction = typename ::std::conditional<P::value, P, Q>::type;
} // namespace internal
// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type). The usage is:
//
// // Sets the default value for type T to be foo.
// DefaultValue<T>::Set(foo);
template <typename T> class DefaultValue { public: // Sets the default value for type T; requires T to be
// copy-constructable and have a public destructor.
static void Set(T x) { delete producer_; producer_ = new FixedValueProducer(x); }
// Provides a factory function to be called to generate the default value.
// This method can be used even if T is only move-constructible, but it is not
// limited to that case.
typedef T (*FactoryFunction)(); static void SetFactory(FactoryFunction factory) { delete producer_; producer_ = new FactoryValueProducer(factory); }
// Unsets the default value for type T.
static void Clear() { delete producer_; producer_ = nullptr; }
// Returns true if and only if the user has set the default value for type T.
static bool IsSet() { return producer_ != nullptr; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() { return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); }
// Returns the default value for type T if the user has set one;
// otherwise returns the built-in default value. Requires that Exists()
// is true, which ensures that the return value is well-defined.
static T Get() { return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() : producer_->Produce(); }
private: class ValueProducer { public: virtual ~ValueProducer() {} virtual T Produce() = 0; };
class FixedValueProducer : public ValueProducer { public: explicit FixedValueProducer(T value) : value_(value) {} T Produce() override { return value_; }
private: const T value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); };
class FactoryValueProducer : public ValueProducer { public: explicit FactoryValueProducer(FactoryFunction factory) : factory_(factory) {} T Produce() override { return factory_(); }
private: const FactoryFunction factory_; GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); };
static ValueProducer* producer_; };
// This partial specialization allows a user to set default values for
// reference types.
template <typename T> class DefaultValue<T&> { public: // Sets the default value for type T&.
static void Set(T& x) { // NOLINT
address_ = &x; }
// Unsets the default value for type T&.
static void Clear() { address_ = nullptr; }
// Returns true if and only if the user has set the default value for type T&.
static bool IsSet() { return address_ != nullptr; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() { return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); }
// Returns the default value for type T& if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T& Get() { return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() : *address_; }
private: static T* address_; };
// This specialization allows DefaultValue<void>::Get() to
// compile.
template <> class DefaultValue<void> { public: static bool Exists() { return true; } static void Get() {} };
// Points to the user-set default value for type T.
template <typename T> typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
// Points to the user-set default value for type T&.
template <typename T> T* DefaultValue<T&>::address_ = nullptr;
// Implement this interface to define an action for function type F.
template <typename F> class ActionInterface { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
ActionInterface() {} virtual ~ActionInterface() {}
// Performs the action. This method is not const, as in general an
// action can have side effects and be stateful. For example, a
// get-the-next-element-from-the-collection action will need to
// remember the current element.
virtual Result Perform(const ArgumentTuple& args) = 0;
private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); };
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called. The implementation of Action<T> is just a
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F> class Action { // Adapter class to allow constructing Action from a legacy ActionInterface.
// New code should create Actions from functors instead.
struct ActionAdapter { // Adapter must be copyable to satisfy std::function requirements.
::std::shared_ptr<ActionInterface<F>> impl_;
template <typename... Args> typename internal::Function<F>::Result operator()(Args&&... args) { return impl_->Perform( ::std::forward_as_tuple(::std::forward<Args>(args)...)); } };
template <typename G> using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
// Constructs a null Action. Needed for storing Action objects in
// STL containers.
Action() {}
// Construct an Action from a specified callable.
// This cannot take std::function directly, because then Action would not be
// directly constructible from lambda (it would require two conversions).
template < typename G, typename = typename std::enable_if<internal::disjunction< IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, G>>::value>::type> Action(G&& fun) { // NOLINT
Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); }
// Constructs an Action from its implementation.
explicit Action(ActionInterface<F>* impl) : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
// This constructor allows us to turn an Action<Func> object into an
// Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type can be implicitly converted to F's.
template <typename Func> explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
// Returns true if and only if this is the DoDefault() action.
bool IsDoDefault() const { return fun_ == nullptr; }
// Performs the action. Note that this method is const even though
// the corresponding method in ActionInterface is not. The reason
// is that a const Action<F> means that it cannot be re-bound to
// another concrete action, not that the concrete action it binds to
// cannot change state. (Think of the difference between a const
// pointer and a pointer to const.)
Result Perform(ArgumentTuple args) const { if (IsDoDefault()) { internal::IllegalDoDefault(__FILE__, __LINE__); } return internal::Apply(fun_, ::std::move(args)); }
private: template <typename G> friend class Action;
template <typename G> void Init(G&& g, ::std::true_type) { fun_ = ::std::forward<G>(g); }
template <typename G> void Init(G&& g, ::std::false_type) { fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; }
template <typename FunctionImpl> struct IgnoreArgs { template <typename... Args> Result operator()(const Args&...) const { return function_impl(); }
FunctionImpl function_impl; };
// fun_ is an empty function if and only if this is the DoDefault() action.
::std::function<F> fun_; };
// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
// class FooAction {
// public:
// template <typename Result, typename ArgumentTuple>
// Result Perform(const ArgumentTuple& args) const {
// // Processes the arguments and returns a result, using
// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
// }
// ...
// };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction. See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl> class PolymorphicAction { public: explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
template <typename F> operator Action<F>() const { return Action<F>(new MonomorphicImpl<F>(impl_)); }
private: template <typename F> class MonomorphicImpl : public ActionInterface<F> { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
Result Perform(const ArgumentTuple& args) override { return impl_.template Perform<Result>(args); }
private: Impl impl_; };
Impl impl_; };
// Creates an Action from its implementation and returns it. The
// created Action object owns the implementation.
template <typename F> Action<F> MakeAction(ActionInterface<F>* impl) { return Action<F>(impl); }
// Creates a polymorphic action from its implementation. This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
// MakePolymorphicAction(foo);
// vs
// PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl> inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { return PolymorphicAction<Impl>(impl); }
namespace internal {
// Helper struct to specialize ReturnAction to execute a move instead of a copy
// on return. Useful for move-only types, but could be used on any type.
template <typename T> struct ByMoveWrapper { explicit ByMoveWrapper(T value) : payload(std::move(value)) {} T payload; };
// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
// Foo foo;
// X x(&foo);
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed. If copying X just copies a reference to foo,
// that copy will be left with a hanging reference. If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
// The real life example of the above scenario happens when an invocation
// of gtl::Container() is passed into Return.
//
template <typename R> class ReturnAction { public: // Constructs a ReturnAction object from the value to be returned.
// 'value' is passed by value instead of by const reference in order
// to allow Return("string literal") to compile.
explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
// This template type conversion operator allows Return(x) to be
// used in ANY function that returns x's type.
template <typename F> operator Action<F>() const { // NOLINT
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename Function<F>::Result Result; GTEST_COMPILE_ASSERT_( !std::is_reference<Result>::value, use_ReturnRef_instead_of_Return_to_return_a_reference); static_assert(!std::is_void<Result>::value, "Can't use Return() on an action expected to return `void`."); return Action<F>(new Impl<R, F>(value_)); }
private: // Implements the Return(x) action for a particular function type F.
template <typename R_, typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple;
// The implicit cast is necessary when Result has more than one
// single-argument constructor (e.g. Result is std::vector<int>) and R
// has a type conversion operator template. In that case, value_(value)
// won't compile as the compiler doesn't known which constructor of
// Result to call. ImplicitCast_ forces the compiler to convert R to
// Result without considering explicit constructors, thus resolving the
// ambiguity. value_ is then initialized using its copy constructor.
explicit Impl(const std::shared_ptr<R>& value) : value_before_cast_(*value), value_(ImplicitCast_<Result>(value_before_cast_)) {}
Result Perform(const ArgumentTuple&) override { return value_; }
private: GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, Result_cannot_be_a_reference_type); // We save the value before casting just in case it is being cast to a
// wrapper type.
R value_before_cast_; Result value_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); };
// Partially specialize for ByMoveWrapper. This version of ReturnAction will
// move its contents instead.
template <typename R_, typename F> class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const std::shared_ptr<R>& wrapper) : performed_(false), wrapper_(wrapper) {}
Result Perform(const ArgumentTuple&) override { GTEST_CHECK_(!performed_) << "A ByMove() action should only be performed once."; performed_ = true; return std::move(wrapper_->payload); }
private: bool performed_; const std::shared_ptr<R> wrapper_; };
const std::shared_ptr<R> value_; };
// Implements the ReturnNull() action.
class ReturnNullAction { public: // Allows ReturnNull() to be used in any pointer-returning function. In C++11
// this is enforced by returning nullptr, and in non-C++11 by asserting a
// pointer type on compile time.
template <typename Result, typename ArgumentTuple> static Result Perform(const ArgumentTuple&) { return nullptr; } };
// Implements the Return() action.
class ReturnVoidAction { public: // Allows Return() to be used in any void-returning function.
template <typename Result, typename ArgumentTuple> static void Perform(const ArgumentTuple&) { static_assert(std::is_void<Result>::value, "Result should be void."); } };
// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T> class ReturnRefAction { public: // Constructs a ReturnRefAction object from the reference to be returned.
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
// This template type conversion operator allows ReturnRef(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F> operator Action<F>() const { typedef typename Function<F>::Result Result; // Asserts that the function return type is a reference. This
// catches the user error of using ReturnRef(x) when Return(x)
// should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, use_Return_instead_of_ReturnRef_to_return_a_value); return Action<F>(new Impl<F>(ref_)); }
private: // Implements the ReturnRef(x) action for a particular function type F.
template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
Result Perform(const ArgumentTuple&) override { return ref_; }
private: T& ref_; };
T& ref_; };
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T> class ReturnRefOfCopyAction { public: // Constructs a ReturnRefOfCopyAction object from the reference to
// be returned.
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
// This template type conversion operator allows ReturnRefOfCopy(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F> operator Action<F>() const { typedef typename Function<F>::Result Result; // Asserts that the function return type is a reference. This
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
// should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_( std::is_reference<Result>::value, use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); return Action<F>(new Impl<F>(value_)); }
private: // Implements the ReturnRefOfCopy(x) action for a particular function type F.
template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const T& value) : value_(value) {} // NOLINT
Result Perform(const ArgumentTuple&) override { return value_; }
private: T value_; };
const T value_; };
// Implements the polymorphic ReturnRoundRobin(v) action, which can be
// used in any function that returns the element_type of v.
template <typename T> class ReturnRoundRobinAction { public: explicit ReturnRoundRobinAction(std::vector<T> values) { GTEST_CHECK_(!values.empty()) << "ReturnRoundRobin requires at least one element."; state_->values = std::move(values); }
template <typename... Args> T operator()(Args&&...) const { return state_->Next(); }
private: struct State { T Next() { T ret_val = values[i++]; if (i == values.size()) i = 0; return ret_val; }
std::vector<T> values; size_t i = 0; }; std::shared_ptr<State> state_ = std::make_shared<State>(); };
// Implements the polymorphic DoDefault() action.
class DoDefaultAction { public: // This template type conversion operator allows DoDefault() to be
// used in any function.
template <typename F> operator Action<F>() const { return Action<F>(); } // NOLINT
};
// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2> class AssignAction { public: AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
template <typename Result, typename ArgumentTuple> void Perform(const ArgumentTuple& /* args */) const { *ptr_ = value_; }
private: T1* const ptr_; const T2 value_; };
#if !GTEST_OS_WINDOWS_MOBILE
// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T> class SetErrnoAndReturnAction { public: SetErrnoAndReturnAction(int errno_value, T result) : errno_(errno_value), result_(result) {} template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple& /* args */) const { errno = errno_; return result_; }
private: const int errno_; const T result_; };
#endif // !GTEST_OS_WINDOWS_MOBILE
// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type.
template <size_t N, typename A, typename = void> struct SetArgumentPointeeAction { A value;
template <typename... Args> void operator()(const Args&... args) const { *::std::get<N>(std::tie(args...)) = value; } };
// Implements the Invoke(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr> struct InvokeMethodAction { Class* const obj_ptr; const MethodPtr method_ptr;
template <typename... Args> auto operator()(Args&&... args) const -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); } };
// Implements the InvokeWithoutArgs(f) action. The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F.
template <typename FunctionImpl> struct InvokeWithoutArgsAction { FunctionImpl function_impl;
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
// compatible with f.
template <typename... Args> auto operator()(const Args&...) -> decltype(function_impl()) { return function_impl(); } };
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr> struct InvokeMethodWithoutArgsAction { Class* const obj_ptr; const MethodPtr method_ptr;
using ReturnType = decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
template <typename... Args> ReturnType operator()(const Args&...) const { return (obj_ptr->*method_ptr)(); } };
// Implements the IgnoreResult(action) action.
template <typename A> class IgnoreResultAction { public: explicit IgnoreResultAction(const A& action) : action_(action) {}
template <typename F> operator Action<F>() const { // Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename internal::Function<F>::Result Result;
// Asserts at compile time that F returns void.
static_assert(std::is_void<Result>::value, "Result type should be void.");
return Action<F>(new Impl<F>(action_)); }
private: template <typename F> class Impl : public ActionInterface<F> { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const A& action) : action_(action) {}
void Perform(const ArgumentTuple& args) override { // Performs the action and ignores its result.
action_.Perform(args); }
private: // Type OriginalFunction is the same as F except that its return
// type is IgnoredValue.
typedef typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
const Action<OriginalFunction> action_; };
const A action_; };
template <typename InnerAction, size_t... I> struct WithArgsAction { InnerAction action;
// The inner action could be anything convertible to Action<X>.
// We use the conversion operator to detect the signature of the inner Action.
template <typename R, typename... Args> operator Action<R(Args...)>() const { // NOLINT
using TupleType = std::tuple<Args...>; Action<R(typename std::tuple_element<I, TupleType>::type...)> converted(action);
return [converted](Args... args) -> R { return converted.Perform(std::forward_as_tuple( std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); }; } };
template <typename... Actions> struct DoAllAction { private: template <typename T> using NonFinalType = typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
template <typename ActionT, size_t... I> std::vector<ActionT> Convert(IndexSequence<I...>) const { return {ActionT(std::get<I>(actions))...}; }
public: std::tuple<Actions...> actions;
template <typename R, typename... Args> operator Action<R(Args...)>() const { // NOLINT
struct Op { std::vector<Action<void(NonFinalType<Args>...)>> converted; Action<R(Args...)> last; R operator()(Args... args) const { auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); for (auto& a : converted) { a.Perform(tuple_args); } return last.Perform(std::move(tuple_args)); } }; return Op{Convert<Action<void(NonFinalType<Args>...)>>( MakeIndexSequence<sizeof...(Actions) - 1>()), std::get<sizeof...(Actions) - 1>(actions)}; } };
template <typename T, typename... Params> struct ReturnNewAction { T* operator()() const { return internal::Apply( [](const Params&... unpacked_params) { return new T(unpacked_params...); }, params); } std::tuple<Params...> params; };
template <size_t k> struct ReturnArgAction { template <typename... Args> auto operator()(const Args&... args) const -> typename std::tuple_element<k, std::tuple<Args...>>::type { return std::get<k>(std::tie(args...)); } };
template <size_t k, typename Ptr> struct SaveArgAction { Ptr pointer;
template <typename... Args> void operator()(const Args&... args) const { *pointer = std::get<k>(std::tie(args...)); } };
template <size_t k, typename Ptr> struct SaveArgPointeeAction { Ptr pointer;
template <typename... Args> void operator()(const Args&... args) const { *pointer = *std::get<k>(std::tie(args...)); } };
template <size_t k, typename T> struct SetArgRefereeAction { T value;
template <typename... Args> void operator()(Args&&... args) const { using argk_type = typename ::std::tuple_element<k, std::tuple<Args...>>::type; static_assert(std::is_lvalue_reference<argk_type>::value, "Argument must be a reference type."); std::get<k>(std::tie(args...)) = value; } };
template <size_t k, typename I1, typename I2> struct SetArrayArgumentAction { I1 first; I2 last;
template <typename... Args> void operator()(const Args&... args) const { auto value = std::get<k>(std::tie(args...)); for (auto it = first; it != last; ++it, (void)++value) { *value = *it; } } };
template <size_t k> struct DeleteArgAction { template <typename... Args> void operator()(const Args&... args) const { delete std::get<k>(std::tie(args...)); } };
template <typename Ptr> struct ReturnPointeeAction { Ptr pointer; template <typename... Args> auto operator()(const Args&...) const -> decltype(*pointer) { return *pointer; } };
#if GTEST_HAS_EXCEPTIONS
template <typename T> struct ThrowAction { T exception; // We use a conversion operator to adapt to any return type.
template <typename R, typename... Args> operator Action<R(Args...)>() const { // NOLINT
T copy = exception; return [copy](Args...) -> R { throw copy; }; } }; #endif // GTEST_HAS_EXCEPTIONS
} // namespace internal
// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments. For example, given
//
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
// MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
// return sqrt(x*x + y*y);
// }
// double DistanceToOriginWithIndex(int index, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXPECT_CALL(mock, Foo("abc", _, _))
// .WillOnce(Invoke(DistanceToOriginWithLabel));
// EXPECT_CALL(mock, Bar(5, _, _))
// .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
// // We can declare any uninteresting argument as Unused.
// double DistanceToOrigin(Unused, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;
// Creates an action that does actions a1, a2, ..., sequentially in
// each invocation. All but the last action will have a readonly view of the
// arguments.
template <typename... Action> internal::DoAllAction<typename std::decay<Action>::type...> DoAll( Action&&... action) { return {std::forward_as_tuple(std::forward<Action>(action)...)}; }
// WithArg<k>(an_action) creates an action that passes the k-th
// (0-based) argument of the mock function to an_action and performs
// it. It adapts an action accepting one argument to one that accepts
// multiple arguments. For convenience, we also provide
// WithArgs<k>(an_action) (defined below) as a synonym.
template <size_t k, typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(InnerAction&& action) { return {std::forward<InnerAction>(action)}; }
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
// the selected arguments of the mock function to an_action and
// performs it. It serves as an adaptor between actions with
// different argument lists.
template <size_t k, size_t... ks, typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> WithArgs(InnerAction&& action) { return {std::forward<InnerAction>(action)}; }
// WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no
// argument. In other words, it adapts an action accepting no
// argument to one that accepts (and ignores) arguments.
template <typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(InnerAction&& action) { return {std::forward<InnerAction>(action)}; }
// Creates an action that returns 'value'. 'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R> internal::ReturnAction<R> Return(R value) { return internal::ReturnAction<R>(std::move(value)); }
// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { return MakePolymorphicAction(internal::ReturnNullAction()); }
// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() { return MakePolymorphicAction(internal::ReturnVoidAction()); }
// Creates an action that returns the reference to a variable.
template <typename R> inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
return internal::ReturnRefAction<R>(x); }
// Prevent using ReturnRef on reference to temporary.
template <typename R, R* = nullptr> internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
// Creates an action that returns the reference to a copy of the
// argument. The copy is created when the action is constructed and
// lives as long as the action.
template <typename R> inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { return internal::ReturnRefOfCopyAction<R>(x); }
// Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this
// invariant.
template <typename R> internal::ByMoveWrapper<R> ByMove(R x) { return internal::ByMoveWrapper<R>(std::move(x)); }
// Creates an action that returns an element of `vals`. Calling this action will
// repeatedly return the next value from `vals` until it reaches the end and
// will restart from the beginning.
template <typename T> internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { return internal::ReturnRoundRobinAction<T>(std::move(vals)); }
// Creates an action that returns an element of `vals`. Calling this action will
// repeatedly return the next value from `vals` until it reaches the end and
// will restart from the beginning.
template <typename T> internal::ReturnRoundRobinAction<T> ReturnRoundRobin( std::initializer_list<T> vals) { return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); }
// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() { return internal::DoDefaultAction(); }
// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T> internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { return {std::move(value)}; }
// The following version is DEPRECATED.
template <size_t N, typename T> internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { return {std::move(value)}; }
// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2> PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); }
#if !GTEST_OS_WINDOWS_MOBILE
// Creates an action that sets errno and returns the appropriate error.
template <typename T> PolymorphicAction<internal::SetErrnoAndReturnAction<T> > SetErrnoAndReturn(int errval, T result) { return MakePolymorphicAction( internal::SetErrnoAndReturnAction<T>(errval, result)); }
#endif // !GTEST_OS_WINDOWS_MOBILE
// Various overloads for Invoke().
// Legacy function.
// Actions can now be implicitly constructed from callables. No need to create
// wrapper objects.
// This function exists for backwards compatibility.
template <typename FunctionImpl> typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { return std::forward<FunctionImpl>(function_impl); }
// Creates an action that invokes the given method on the given object
// with the mock function's arguments.
template <class Class, typename MethodPtr> internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; }
// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl> internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> InvokeWithoutArgs(FunctionImpl function_impl) { return {std::move(function_impl)}; }
// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr> internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; }
// Creates an action that performs an_action and throws away its
// result. In other words, it changes the return type of an_action to
// void. an_action MUST NOT return void, or the code won't compile.
template <typename A> inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { return internal::IgnoreResultAction<A>(an_action); }
// Creates a reference wrapper for the given L-value. If necessary,
// you can explicitly specify the type of the reference. For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&. If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
// ByRef<const Base>(derived)
//
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
// However, it may still be used for consistency with ByMove().
template <typename T> inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
return ::std::reference_wrapper<T>(l_value); }
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
// instance of type T, constructed on the heap with constructor arguments
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
template <typename T, typename... Params> internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( Params&&... params) { return {std::forward_as_tuple(std::forward<Params>(params)...)}; }
// Action ReturnArg<k>() returns the k-th argument of the mock function.
template <size_t k> internal::ReturnArgAction<k> ReturnArg() { return {}; }
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
// mock function to *pointer.
template <size_t k, typename Ptr> internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { return {pointer}; }
// Action SaveArgPointee<k>(pointer) saves the value pointed to
// by the k-th (0-based) argument of the mock function to *pointer.
template <size_t k, typename Ptr> internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { return {pointer}; }
// Action SetArgReferee<k>(value) assigns 'value' to the variable
// referenced by the k-th (0-based) argument of the mock function.
template <size_t k, typename T> internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( T&& value) { return {std::forward<T>(value)}; }
// Action SetArrayArgument<k>(first, last) copies the elements in
// source range [first, last) to the array pointed to by the k-th
// (0-based) argument, which can be either a pointer or an
// iterator. The action does not take ownership of the elements in the
// source range.
template <size_t k, typename I1, typename I2> internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, I2 last) { return {first, last}; }
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
// function.
template <size_t k> internal::DeleteArgAction<k> DeleteArg() { return {}; }
// This action returns the value pointed to by 'pointer'.
template <typename Ptr> internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { return {pointer}; }
// Action Throw(exception) can be used in a mock function of any type
// to throw the given exception. Any copyable value can be thrown.
#if GTEST_HAS_EXCEPTIONS
template <typename T> internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { return {std::forward<T>(exception)}; } #endif // GTEST_HAS_EXCEPTIONS
namespace internal {
// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
// defines an action that can be used in a mock function. Typically,
// these actions only care about a subset of the arguments of the mock
// function. For example, if such an action only uses the second
// argument, it can be used in any mock function that takes >= 2
// arguments where the type of the second argument is compatible.
//
// Therefore, the action implementation must be prepared to take more
// arguments than it needs. The ExcessiveArg type is used to
// represent those excessive arguments. In order to keep the compiler
// error messages tractable, we define it in the testing namespace
// instead of testing::internal. However, this is an INTERNAL TYPE
// and subject to change without notice, so a user MUST NOT USE THIS
// TYPE DIRECTLY.
struct ExcessiveArg {};
// Builds an implementation of an Action<> for some particular signature, using
// a class defined by an ACTION* macro.
template <typename F, typename Impl> struct ActionImpl;
template <typename Impl> struct ImplBase { struct Holder { // Allows each copy of the Action<> to get to the Impl.
explicit operator const Impl&() const { return *ptr; } std::shared_ptr<Impl> ptr; }; using type = typename std::conditional<std::is_constructible<Impl>::value, Impl, Holder>::type; };
template <typename R, typename... Args, typename Impl> struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { using Base = typename ImplBase<Impl>::type; using function_type = R(Args...); using args_type = std::tuple<Args...>;
ActionImpl() = default; // Only defined if appropriate for Base.
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
R operator()(Args&&... arg) const { static constexpr size_t kMaxArgs = sizeof...(Args) <= 10 ? sizeof...(Args) : 10; return Apply(MakeIndexSequence<kMaxArgs>{}, MakeIndexSequence<10 - kMaxArgs>{}, args_type{std::forward<Args>(arg)...}); }
template <std::size_t... arg_id, std::size_t... excess_id> R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, const args_type& args) const { // Impl need not be specific to the signature of action being implemented;
// only the implementing function body needs to have all of the specific
// types instantiated. Up to 10 of the args that are provided by the
// args_type get passed, followed by a dummy of unspecified type for the
// remainder up to 10 explicit args.
static constexpr ExcessiveArg kExcessArg{}; return static_cast<const Impl&>(*this).template gmock_PerformImpl< /*function_type=*/function_type, /*return_type=*/R, /*args_type=*/args_type, /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>( /*args=*/args, std::get<arg_id>(args)..., ((void)excess_id, kExcessArg)...); } };
// Stores a default-constructed Impl as part of the Action<>'s
// std::function<>. The Impl should be trivial to copy.
template <typename F, typename Impl> ::testing::Action<F> MakeAction() { return ::testing::Action<F>(ActionImpl<F, Impl>()); }
// Stores just the one given instance of Impl.
template <typename F, typename Impl> ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); }
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ GMOCK_INTERNAL_ARG_UNUSED, , 10)
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
#define GMOCK_ACTION_TYPE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
, param##_type gmock_p##i #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
, std::forward<param##_type>(gmock_p##i) #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
, param(::std::forward<param##_type>(gmock_p##i)) #define GMOCK_ACTION_INIT_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ class full_name { \ public: \ explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ : impl_(std::make_shared<gmock_Impl>( \ GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \ full_name(const full_name&) = default; \ full_name(full_name&&) noexcept = default; \ template <typename F> \ operator ::testing::Action<F>() const { \ return ::testing::internal::MakeAction<F>(impl_); \ } \ private: \ class gmock_Impl { \ public: \ explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ : GMOCK_ACTION_INIT_PARAMS_(params) {} \ template <typename function_type, typename return_type, \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ GMOCK_ACTION_FIELD_PARAMS_(params) \ }; \ std::shared_ptr<const gmock_Impl> impl_; \ }; \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ GMOCK_ACTION_GVALUE_PARAMS_(params)); \ } \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ template <typename function_type, typename return_type, typename args_type, \ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \ gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
} // namespace internal
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
#define ACTION(name) \
class name##Action { \ public: \ explicit name##Action() noexcept {} \ name##Action(const name##Action&) noexcept {} \ template <typename F> \ operator ::testing::Action<F>() const { \ return ::testing::internal::MakeAction<F, gmock_Impl>(); \ } \ private: \ class gmock_Impl { \ public: \ template <typename function_type, typename return_type, \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ }; \ }; \ inline name##Action name() GTEST_MUST_USE_RESULT_; \ inline name##Action name() { return name##Action(); } \ template <typename function_type, typename return_type, typename args_type, \ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type name##Action::gmock_Impl::gmock_PerformImpl( \ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
#define ACTION_P2(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
#define ACTION_P3(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
#define ACTION_P4(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
#define ACTION_P5(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
#define ACTION_P6(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
#define ACTION_P7(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
#define ACTION_P8(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
#define ACTION_P9(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
#define ACTION_P10(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
} // namespace testing
#ifdef _MSC_VER
# pragma warning(pop)
#endif
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|