You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

283 lines
19 KiB

2 months ago
  1. # Matchers Reference
  2. A **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or
  3. `EXPECT_CALL()`, or use it to validate a value directly using two macros:
  4. | Macro | Description |
  5. | :----------------------------------- | :------------------------------------ |
  6. | `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches `matcher`. |
  7. | `ASSERT_THAT(actual_value, matcher)` | The same as `EXPECT_THAT(actual_value, matcher)`, except that it generates a **fatal** failure. |
  8. {: .callout .note}
  9. **Note:** Although equality matching via `EXPECT_THAT(actual_value,
  10. expected_value)` is supported, prefer to make the comparison explicit via
  11. `EXPECT_THAT(actual_value, Eq(expected_value))` or `EXPECT_EQ(actual_value,
  12. expected_value)`.
  13. Built-in matchers (where `argument` is the function argument, e.g.
  14. `actual_value` in the example above, or when used in the context of
  15. `EXPECT_CALL(mock_object, method(matchers))`, the arguments of `method`) are
  16. divided into several categories. All matchers are defined in the `::testing`
  17. namespace unless otherwise noted.
  18. ## Wildcard
  19. Matcher | Description
  20. :-------------------------- | :-----------------------------------------------
  21. `_` | `argument` can be any value of the correct type.
  22. `A<type>()` or `An<type>()` | `argument` can be any value of type `type`.
  23. ## Generic Comparison
  24. | Matcher | Description |
  25. | :--------------------- | :-------------------------------------------------- |
  26. | `Eq(value)` or `value` | `argument == value` |
  27. | `Ge(value)` | `argument >= value` |
  28. | `Gt(value)` | `argument > value` |
  29. | `Le(value)` | `argument <= value` |
  30. | `Lt(value)` | `argument < value` |
  31. | `Ne(value)` | `argument != value` |
  32. | `IsFalse()` | `argument` evaluates to `false` in a Boolean context. |
  33. | `IsTrue()` | `argument` evaluates to `true` in a Boolean context. |
  34. | `IsNull()` | `argument` is a `NULL` pointer (raw or smart). |
  35. | `NotNull()` | `argument` is a non-null pointer (raw or smart). |
  36. | `Optional(m)` | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)|
  37. | `VariantWith<T>(m)` | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. |
  38. | `Ref(variable)` | `argument` is a reference to `variable`. |
  39. | `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. |
  40. Except `Ref()`, these matchers make a *copy* of `value` in case it's modified or
  41. destructed later. If the compiler complains that `value` doesn't have a public
  42. copy constructor, try wrap it in `std::ref()`, e.g.
  43. `Eq(std::ref(non_copyable_value))`. If you do that, make sure
  44. `non_copyable_value` is not changed afterwards, or the meaning of your matcher
  45. will be changed.
  46. `IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types
  47. that can be explicitly converted to Boolean, but are not implicitly converted to
  48. Boolean. In other cases, you can use the basic
  49. [`EXPECT_TRUE` and `EXPECT_FALSE`](assertions.md#boolean) assertions.
  50. ## Floating-Point Matchers {#FpMatchers}
  51. | Matcher | Description |
  52. | :------------------------------- | :--------------------------------- |
  53. | `DoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal. |
  54. | `FloatEq(a_float)` | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
  55. | `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
  56. | `NanSensitiveFloatEq(a_float)` | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
  57. | `IsNan()` | `argument` is any floating-point type with a NaN value. |
  58. The above matchers use ULP-based comparison (the same as used in googletest).
  59. They automatically pick a reasonable error bound based on the absolute value of
  60. the expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard,
  61. which requires comparing two NaNs for equality to return false. The
  62. `NanSensitive*` version instead treats two NaNs as equal, which is often what a
  63. user wants.
  64. | Matcher | Description |
  65. | :------------------------------------------------ | :----------------------- |
  66. | `DoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
  67. | `FloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
  68. | `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
  69. | `NanSensitiveFloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
  70. ## String Matchers
  71. The `argument` can be either a C string or a C++ string object:
  72. | Matcher | Description |
  73. | :---------------------- | :------------------------------------------------- |
  74. | `ContainsRegex(string)` | `argument` matches the given regular expression. |
  75. | `EndsWith(suffix)` | `argument` ends with string `suffix`. |
  76. | `HasSubstr(string)` | `argument` contains `string` as a sub-string. |
  77. | `IsEmpty()` | `argument` is an empty string. |
  78. | `MatchesRegex(string)` | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. |
  79. | `StartsWith(prefix)` | `argument` starts with string `prefix`. |
  80. | `StrCaseEq(string)` | `argument` is equal to `string`, ignoring case. |
  81. | `StrCaseNe(string)` | `argument` is not equal to `string`, ignoring case. |
  82. | `StrEq(string)` | `argument` is equal to `string`. |
  83. | `StrNe(string)` | `argument` is not equal to `string`. |
  84. `ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They
  85. use the regular expression syntax defined
  86. [here](../advanced.md#regular-expression-syntax). All of these matchers, except
  87. `ContainsRegex()` and `MatchesRegex()` work for wide strings as well.
  88. ## Container Matchers
  89. Most STL-style containers support `==`, so you can use `Eq(expected_container)`
  90. or simply `expected_container` to match a container exactly. If you want to
  91. write the elements in-line, match them more flexibly, or get more informative
  92. messages, you can use:
  93. | Matcher | Description |
  94. | :---------------------------------------- | :------------------------------- |
  95. | `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. |
  96. | `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
  97. | `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
  98. | `Each(e)` | `argument` is a container where *every* element matches `e`, which can be either a value or a matcher. |
  99. | `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the *i*-th element matches `ei`, which can be a value or a matcher. |
  100. | `ElementsAreArray({e0, e1, ..., en})`, `ElementsAreArray(a_container)`, `ElementsAreArray(begin, end)`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
  101. | `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
  102. | `IsSubsetOf({e0, e1, ..., en})`, `IsSubsetOf(a_container)`, `IsSubsetOf(begin, end)`, `IsSubsetOf(array)`, or `IsSubsetOf(array, count)` | `argument` matches `UnorderedElementsAre(x0, x1, ..., xk)` for some subset `{x0, x1, ..., xk}` of the expected matchers. |
  103. | `IsSupersetOf({e0, e1, ..., en})`, `IsSupersetOf(a_container)`, `IsSupersetOf(begin, end)`, `IsSupersetOf(array)`, or `IsSupersetOf(array, count)` | Some subset of `argument` matches `UnorderedElementsAre(`expected matchers`)`. |
  104. | `Pointwise(m, container)`, `Pointwise(m, {e0, e1, ..., en})` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
  105. | `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
  106. | `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under *some* permutation of the elements, each element matches an `ei` (for a different `i`), which can be a value or a matcher. |
  107. | `UnorderedElementsAreArray({e0, e1, ..., en})`, `UnorderedElementsAreArray(a_container)`, `UnorderedElementsAreArray(begin, end)`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
  108. | `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. |
  109. | `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. |
  110. | `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. |
  111. **Notes:**
  112. * These matchers can also match:
  113. 1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`),
  114. and
  115. 2. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer,
  116. int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)).
  117. * The array being matched may be multi-dimensional (i.e. its elements can be
  118. arrays).
  119. * `m` in `Pointwise(m, ...)` and `UnorderedPointwise(m, ...)` should be a
  120. matcher for `::std::tuple<T, U>` where `T` and `U` are the element type of
  121. the actual container and the expected container, respectively. For example,
  122. to compare two `Foo` containers where `Foo` doesn't support `operator==`,
  123. one might write:
  124. ```cpp
  125. using ::std::get;
  126. MATCHER(FooEq, "") {
  127. return std::get<0>(arg).Equals(std::get<1>(arg));
  128. }
  129. ...
  130. EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
  131. ```
  132. ## Member Matchers
  133. | Matcher | Description |
  134. | :------------------------------ | :----------------------------------------- |
  135. | `Field(&class::field, m)` | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
  136. | `Field(field_name, &class::field, m)` | The same as the two-parameter version, but provides a better error message. |
  137. | `Key(e)` | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. |
  138. | `Pair(m1, m2)` | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
  139. | `FieldsAre(m...)` | `argument` is a compatible object where each field matches piecewise with the matchers `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. |
  140. | `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. The method `property()` must take no argument and be declared as `const`. |
  141. | `Property(property_name, &class::property, m)` | The same as the two-parameter version, but provides a better error message.
  142. **Notes:**
  143. * You can use `FieldsAre()` to match any type that supports structured
  144. bindings, such as `std::tuple`, `std::pair`, `std::array`, and aggregate
  145. types. For example:
  146. ```cpp
  147. std::tuple<int, std::string> my_tuple{7, "hello world"};
  148. EXPECT_THAT(my_tuple, FieldsAre(Ge(0), HasSubstr("hello")));
  149. struct MyStruct {
  150. int value = 42;
  151. std::string greeting = "aloha";
  152. };
  153. MyStruct s;
  154. EXPECT_THAT(s, FieldsAre(42, "aloha"));
  155. ```
  156. * Don't use `Property()` against member functions that you do not own, because
  157. taking addresses of functions is fragile and generally not part of the
  158. contract of the function.
  159. ## Matching the Result of a Function, Functor, or Callback
  160. | Matcher | Description |
  161. | :--------------- | :------------------------------------------------ |
  162. | `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a function or functor. |
  163. ## Pointer Matchers
  164. | Matcher | Description |
  165. | :------------------------ | :---------------------------------------------- |
  166. | `Address(m)` | the result of `std::addressof(argument)` matches `m`. |
  167. | `Pointee(m)` | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. |
  168. | `Pointer(m)` | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. |
  169. | `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
  170. ## Multi-argument Matchers {#MultiArgMatchers}
  171. Technically, all matchers match a *single* value. A "multi-argument" matcher is
  172. just one that matches a *tuple*. The following matchers can be used to match a
  173. tuple `(x, y)`:
  174. Matcher | Description
  175. :------ | :----------
  176. `Eq()` | `x == y`
  177. `Ge()` | `x >= y`
  178. `Gt()` | `x > y`
  179. `Le()` | `x <= y`
  180. `Lt()` | `x < y`
  181. `Ne()` | `x != y`
  182. You can use the following selectors to pick a subset of the arguments (or
  183. reorder them) to participate in the matching:
  184. | Matcher | Description |
  185. | :------------------------- | :---------------------------------------------- |
  186. | `AllArgs(m)` | Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`. |
  187. | `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`. |
  188. ## Composite Matchers
  189. You can make a matcher from one or more other matchers:
  190. | Matcher | Description |
  191. | :------------------------------- | :-------------------------------------- |
  192. | `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. |
  193. | `AllOfArray({m0, m1, ..., mn})`, `AllOfArray(a_container)`, `AllOfArray(begin, end)`, `AllOfArray(array)`, or `AllOfArray(array, count)` | The same as `AllOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
  194. | `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. |
  195. | `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
  196. | `Not(m)` | `argument` doesn't match matcher `m`. |
  197. ## Adapters for Matchers
  198. | Matcher | Description |
  199. | :---------------------- | :------------------------------------ |
  200. | `MatcherCast<T>(m)` | casts matcher `m` to type `Matcher<T>`. |
  201. | `SafeMatcherCast<T>(m)` | [safely casts](../gmock_cook_book.md#SafeMatcherCast) matcher `m` to type `Matcher<T>`. |
  202. | `Truly(predicate)` | `predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor. |
  203. `AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`,
  204. which must be a permanent callback.
  205. ## Using Matchers as Predicates {#MatchersAsPredicatesCheat}
  206. | Matcher | Description |
  207. | :---------------------------- | :------------------------------------------ |
  208. | `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor. |
  209. | `ExplainMatchResult(m, value, result_listener)` | evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
  210. | `Value(value, m)` | evaluates to `true` if `value` matches `m`. |
  211. ## Defining Matchers
  212. | Matcher | Description |
  213. | :----------------------------------- | :------------------------------------ |
  214. | `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
  215. | `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. |
  216. | `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
  217. **Notes:**
  218. 1. The `MATCHER*` macros cannot be used inside a function or class.
  219. 2. The matcher body must be *purely functional* (i.e. it cannot have any side
  220. effect, and the result must not depend on anything other than the value
  221. being matched and the matcher parameters).
  222. 3. You can use `PrintToString(x)` to convert a value `x` of any type to a
  223. string.
  224. 4. You can use `ExplainMatchResult()` in a custom matcher to wrap another
  225. matcher, for example:
  226. ```cpp
  227. MATCHER_P(NestedPropertyMatches, matcher, "") {
  228. return ExplainMatchResult(matcher, arg.nested().property(), result_listener);
  229. }
  230. ```