|
|
/*
tests/test_numpy_array.cpp -- test core array functionality
Copyright (c) 2016 Ivan Smirnov <i.s.smirnov@gmail.com>
All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */
#include "pybind11_tests.h"
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <cstdint>
using arr = py::array; using arr_t = py::array_t<uint16_t, 0>; static_assert(std::is_same<arr_t::value_type, uint16_t>::value, "");
template<typename... Ix> arr data(const arr& a, Ix... index) { return arr(a.nbytes() - a.offset_at(index...), (const uint8_t *) a.data(index...)); }
template<typename... Ix> arr data_t(const arr_t& a, Ix... index) { return arr(a.size() - a.index_at(index...), a.data(index...)); }
arr& mutate_data(arr& a) { auto ptr = (uint8_t *) a.mutable_data(); for (ssize_t i = 0; i < a.nbytes(); i++) ptr[i] = (uint8_t) (ptr[i] * 2); return a; }
arr_t& mutate_data_t(arr_t& a) { auto ptr = a.mutable_data(); for (ssize_t i = 0; i < a.size(); i++) ptr[i]++; return a; }
template<typename... Ix> arr& mutate_data(arr& a, Ix... index) { auto ptr = (uint8_t *) a.mutable_data(index...); for (ssize_t i = 0; i < a.nbytes() - a.offset_at(index...); i++) ptr[i] = (uint8_t) (ptr[i] * 2); return a; }
template<typename... Ix> arr_t& mutate_data_t(arr_t& a, Ix... index) { auto ptr = a.mutable_data(index...); for (ssize_t i = 0; i < a.size() - a.index_at(index...); i++) ptr[i]++; return a; }
template<typename... Ix> ssize_t index_at(const arr& a, Ix... idx) { return a.index_at(idx...); } template<typename... Ix> ssize_t index_at_t(const arr_t& a, Ix... idx) { return a.index_at(idx...); } template<typename... Ix> ssize_t offset_at(const arr& a, Ix... idx) { return a.offset_at(idx...); } template<typename... Ix> ssize_t offset_at_t(const arr_t& a, Ix... idx) { return a.offset_at(idx...); } template<typename... Ix> ssize_t at_t(const arr_t& a, Ix... idx) { return a.at(idx...); } template<typename... Ix> arr_t& mutate_at_t(arr_t& a, Ix... idx) { a.mutable_at(idx...)++; return a; }
#define def_index_fn(name, type) \
sm.def(#name, [](type a) { return name(a); }); \ sm.def(#name, [](type a, int i) { return name(a, i); }); \ sm.def(#name, [](type a, int i, int j) { return name(a, i, j); }); \ sm.def(#name, [](type a, int i, int j, int k) { return name(a, i, j, k); });
template <typename T, typename T2> py::handle auxiliaries(T &&r, T2 &&r2) { if (r.ndim() != 2) throw std::domain_error("error: ndim != 2"); py::list l; l.append(*r.data(0, 0)); l.append(*r2.mutable_data(0, 0)); l.append(r.data(0, 1) == r2.mutable_data(0, 1)); l.append(r.ndim()); l.append(r.itemsize()); l.append(r.shape(0)); l.append(r.shape(1)); l.append(r.size()); l.append(r.nbytes()); return l.release(); }
test_initializer numpy_array([](py::module &m) { auto sm = m.def_submodule("array");
sm.def("ndim", [](const arr& a) { return a.ndim(); }); sm.def("shape", [](const arr& a) { return arr(a.ndim(), a.shape()); }); sm.def("shape", [](const arr& a, ssize_t dim) { return a.shape(dim); }); sm.def("strides", [](const arr& a) { return arr(a.ndim(), a.strides()); }); sm.def("strides", [](const arr& a, ssize_t dim) { return a.strides(dim); }); sm.def("writeable", [](const arr& a) { return a.writeable(); }); sm.def("size", [](const arr& a) { return a.size(); }); sm.def("itemsize", [](const arr& a) { return a.itemsize(); }); sm.def("nbytes", [](const arr& a) { return a.nbytes(); }); sm.def("owndata", [](const arr& a) { return a.owndata(); });
def_index_fn(data, const arr&); def_index_fn(data_t, const arr_t&); def_index_fn(index_at, const arr&); def_index_fn(index_at_t, const arr_t&); def_index_fn(offset_at, const arr&); def_index_fn(offset_at_t, const arr_t&); def_index_fn(mutate_data, arr&); def_index_fn(mutate_data_t, arr_t&); def_index_fn(at_t, const arr_t&); def_index_fn(mutate_at_t, arr_t&);
sm.def("make_f_array", [] { return py::array_t<float>({ 2, 2 }, { 4, 8 }); });
sm.def("make_c_array", [] { return py::array_t<float>({ 2, 2 }, { 8, 4 }); });
sm.def("wrap", [](py::array a) { return py::array( a.dtype(), {a.shape(), a.shape() + a.ndim()}, {a.strides(), a.strides() + a.ndim()}, a.data(), a ); });
struct ArrayClass { int data[2] = { 1, 2 }; ArrayClass() { py::print("ArrayClass()"); } ~ArrayClass() { py::print("~ArrayClass()"); } };
py::class_<ArrayClass>(sm, "ArrayClass") .def(py::init<>()) .def("numpy_view", [](py::object &obj) { py::print("ArrayClass::numpy_view()"); ArrayClass &a = obj.cast<ArrayClass&>(); return py::array_t<int>({2}, {4}, a.data, obj); } );
sm.def("function_taking_uint64", [](uint64_t) { });
sm.def("isinstance_untyped", [](py::object yes, py::object no) { return py::isinstance<py::array>(yes) && !py::isinstance<py::array>(no); });
sm.def("isinstance_typed", [](py::object o) { return py::isinstance<py::array_t<double>>(o) && !py::isinstance<py::array_t<int>>(o); });
sm.def("default_constructors", []() { return py::dict( "array"_a=py::array(), "array_t<int32>"_a=py::array_t<std::int32_t>(), "array_t<double>"_a=py::array_t<double>() ); });
sm.def("converting_constructors", [](py::object o) { return py::dict( "array"_a=py::array(o), "array_t<int32>"_a=py::array_t<std::int32_t>(o), "array_t<double>"_a=py::array_t<double>(o) ); });
// Overload resolution tests:
sm.def("overloaded", [](py::array_t<double>) { return "double"; }); sm.def("overloaded", [](py::array_t<float>) { return "float"; }); sm.def("overloaded", [](py::array_t<int>) { return "int"; }); sm.def("overloaded", [](py::array_t<unsigned short>) { return "unsigned short"; }); sm.def("overloaded", [](py::array_t<long long>) { return "long long"; }); sm.def("overloaded", [](py::array_t<std::complex<double>>) { return "double complex"; }); sm.def("overloaded", [](py::array_t<std::complex<float>>) { return "float complex"; });
sm.def("overloaded2", [](py::array_t<std::complex<double>>) { return "double complex"; }); sm.def("overloaded2", [](py::array_t<double>) { return "double"; }); sm.def("overloaded2", [](py::array_t<std::complex<float>>) { return "float complex"; }); sm.def("overloaded2", [](py::array_t<float>) { return "float"; });
// Only accept the exact types:
sm.def("overloaded3", [](py::array_t<int>) { return "int"; }, py::arg().noconvert()); sm.def("overloaded3", [](py::array_t<double>) { return "double"; }, py::arg().noconvert());
// Make sure we don't do unsafe coercion (e.g. float to int) when not using forcecast, but
// rather that float gets converted via the safe (conversion to double) overload:
sm.def("overloaded4", [](py::array_t<long long, 0>) { return "long long"; }); sm.def("overloaded4", [](py::array_t<double, 0>) { return "double"; });
// But we do allow conversion to int if forcecast is enabled (but only if no overload matches
// without conversion)
sm.def("overloaded5", [](py::array_t<unsigned int>) { return "unsigned int"; }); sm.def("overloaded5", [](py::array_t<double>) { return "double"; });
// Issue 685: ndarray shouldn't go to std::string overload
sm.def("issue685", [](std::string) { return "string"; }); sm.def("issue685", [](py::array) { return "array"; }); sm.def("issue685", [](py::object) { return "other"; });
sm.def("proxy_add2", [](py::array_t<double> a, double v) { auto r = a.mutable_unchecked<2>(); for (ssize_t i = 0; i < r.shape(0); i++) for (ssize_t j = 0; j < r.shape(1); j++) r(i, j) += v; }, py::arg().noconvert(), py::arg());
sm.def("proxy_init3", [](double start) { py::array_t<double, py::array::c_style> a({ 3, 3, 3 }); auto r = a.mutable_unchecked<3>(); for (ssize_t i = 0; i < r.shape(0); i++) for (ssize_t j = 0; j < r.shape(1); j++) for (ssize_t k = 0; k < r.shape(2); k++) r(i, j, k) = start++; return a; }); sm.def("proxy_init3F", [](double start) { py::array_t<double, py::array::f_style> a({ 3, 3, 3 }); auto r = a.mutable_unchecked<3>(); for (ssize_t k = 0; k < r.shape(2); k++) for (ssize_t j = 0; j < r.shape(1); j++) for (ssize_t i = 0; i < r.shape(0); i++) r(i, j, k) = start++; return a; }); sm.def("proxy_squared_L2_norm", [](py::array_t<double> a) { auto r = a.unchecked<1>(); double sumsq = 0; for (ssize_t i = 0; i < r.shape(0); i++) sumsq += r[i] * r(i); // Either notation works for a 1D array
return sumsq; });
sm.def("proxy_auxiliaries2", [](py::array_t<double> a) { auto r = a.unchecked<2>(); auto r2 = a.mutable_unchecked<2>(); return auxiliaries(r, r2); });
// Same as the above, but without a compile-time dimensions specification:
sm.def("proxy_add2_dyn", [](py::array_t<double> a, double v) { auto r = a.mutable_unchecked(); if (r.ndim() != 2) throw std::domain_error("error: ndim != 2"); for (ssize_t i = 0; i < r.shape(0); i++) for (ssize_t j = 0; j < r.shape(1); j++) r(i, j) += v; }, py::arg().noconvert(), py::arg()); sm.def("proxy_init3_dyn", [](double start) { py::array_t<double, py::array::c_style> a({ 3, 3, 3 }); auto r = a.mutable_unchecked(); if (r.ndim() != 3) throw std::domain_error("error: ndim != 3"); for (ssize_t i = 0; i < r.shape(0); i++) for (ssize_t j = 0; j < r.shape(1); j++) for (ssize_t k = 0; k < r.shape(2); k++) r(i, j, k) = start++; return a; }); sm.def("proxy_auxiliaries2_dyn", [](py::array_t<double> a) { return auxiliaries(a.unchecked(), a.mutable_unchecked()); });
sm.def("array_auxiliaries2", [](py::array_t<double> a) { return auxiliaries(a, a); });
// Issue #785: Uninformative "Unknown internal error" exception when constructing array from empty object:
sm.def("array_fail_test", []() { return py::array(py::object()); }); sm.def("array_t_fail_test", []() { return py::array_t<double>(py::object()); });
// Make sure the error from numpy is being passed through:
sm.def("array_fail_test_negative_size", []() { int c = 0; return py::array(-1, &c); });
// Issue (unnumbered; reported in #788): regression: initializer lists can be ambiguous
sm.def("array_initializer_list", []() { return py::array_t<float>(1); }); // { 1 } also works, but clang warns about it
sm.def("array_initializer_list", []() { return py::array_t<float>({ 1, 2 }); }); sm.def("array_initializer_list", []() { return py::array_t<float>({ 1, 2, 3 }); }); sm.def("array_initializer_list", []() { return py::array_t<float>({ 1, 2, 3, 4 }); });
// reshape array to 2D without changing size
sm.def("array_reshape2", [](py::array_t<double> a) { const ssize_t dim_sz = (ssize_t)std::sqrt(a.size()); if (dim_sz * dim_sz != a.size()) throw std::domain_error("array_reshape2: input array total size is not a squared integer"); a.resize({dim_sz, dim_sz}); });
// resize to 3D array with each dimension = N
sm.def("array_resize3", [](py::array_t<double> a, size_t N, bool refcheck) { a.resize({N, N, N}, refcheck); });
// return 2D array with Nrows = Ncols = N
sm.def("create_and_resize", [](size_t N) { py::array_t<double> a; a.resize({N, N}); std::fill(a.mutable_data(), a.mutable_data() + a.size(), 42.); return a; }); });
|