|
|
/**
* N-queens example. * Based on work by Robert Meolic, released by him into the public domain. */
#include <argp.h>
#include <inttypes.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#ifdef HAVE_PROFILER
#include <gperftools/profiler.h>
#endif
#include <sylvan.h>
#include <sylvan_table.h>
/* Configuration */ static int report_minterms = 0; // report minterms at every major step
static int report_minor = 0; // report minor steps
static int report_stats = 0; // report stats at end
static int workers = 0; // autodetect number of workers by default
static size_t size = 0; // will be set by caller
#ifdef HAVE_PROFILER
static char* profile_filename = NULL; // filename for profiling
#endif
/* argp configuration */ static struct argp_option options[] = { {"workers", 'w', "<workers>", 0, "Number of workers (default=0: autodetect)", 0}, #ifdef HAVE_PROFILER
{"profiler", 'p', "<filename>", 0, "Filename for profiling", 0}, #endif
{"report-minterms", 1, 0, 0, "Report #minterms at every major step", 1}, {"report-minor", 2, 0, 0, "Report minor steps", 1}, {"report-stats", 3, 0, 0, "Report statistics at end", 1}, {0, 0, 0, 0, 0, 0} }; static error_t parse_opt(int key, char *arg, struct argp_state *state) { switch (key) { case 'w': workers = atoi(arg); break; case 1: report_minterms = 1; break; case 2: report_minor = 1; break; case 3: report_stats = 1; break; #ifdef HAVE_PROFILER
case 'p': profile_filename = arg; break; #endif
case ARGP_KEY_ARG: if (state->arg_num >= 1) argp_usage(state); size = atoi(arg); break; case ARGP_KEY_END: if (state->arg_num < 1) argp_usage(state); break; default: return ARGP_ERR_UNKNOWN; } return 0; } static struct argp argp = { options, parse_opt, "<size>", 0, 0, 0, 0 };
/* Obtain current wallclock time */ static double wctime() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec + 1E-6 * tv.tv_usec); }
static double t_start; #define INFO(s, ...) fprintf(stdout, "[% 8.2f] " s, wctime()-t_start, ##__VA_ARGS__)
#define Abort(...) { fprintf(stderr, __VA_ARGS__); exit(-1); }
VOID_TASK_0(gc_start) { if (report_minor) { printf("\n"); } INFO("(GC) Starting garbage collection...\n"); }
VOID_TASK_0(gc_end) { INFO("(GC) Garbage collection done.\n"); }
int main(int argc, char** argv) { argp_parse(&argp, argc, argv, 0, 0, 0); setlocale(LC_NUMERIC, "en_US.utf-8"); t_start = wctime();
// Init Lace
lace_init(workers, 1000000); // auto-detect number of workers, use a 1,000,000 size task queue
lace_startup(0, NULL, NULL); // auto-detect program stack, do not use a callback for startup
// Lace is initialized, now set local variables
LACE_ME;
// Init Sylvan
// Nodes table size of 1LL<<20 is 1048576 entries
// Cache size of 1LL<<18 is 262144 entries
// Nodes table size: 24 bytes * nodes
// Cache table size: 36 bytes * cache entries
// With 2^20 nodes and 2^18 cache entries, that's 33 MB
// With 2^24 nodes and 2^22 cache entries, that's 528 MB
sylvan_set_sizes(1LL<<20, 1LL<<24, 1LL<<18, 1LL<<22); sylvan_init_package(); sylvan_set_granularity(3); // granularity 3 is decent value for this small problem - 1 means "use cache for every operation"
sylvan_init_bdd();
// Before and after garbage collection, call gc_start and gc_end
sylvan_gc_hook_pregc(TASK(gc_start)); sylvan_gc_hook_postgc(TASK(gc_end));
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStart(profile_filename); #endif
double t1 = wctime();
BDD zero = sylvan_false; BDD one = sylvan_true;
// Variables 0 ... (SIZE*SIZE-1)
BDD board[size*size]; for (size_t i=0; i<size*size; i++) { board[i] = sylvan_ithvar(i); sylvan_protect(board+i); }
BDD res = one, temp = one;
// we use sylvan's "protect" marking mechanism...
// that means we hardly need to do manual ref/deref when the variables change
sylvan_protect(&res); sylvan_protect(&temp);
// Old satcount function still requires a silly variables cube
BDD vars = one; sylvan_protect(&vars); for (size_t i=0; i<size*size; i++) vars = sylvan_and(vars, board[i]);
INFO("Initialisation complete!\n");
if (report_minor) { INFO("Encoding rows... "); } else { INFO("Encoding rows...\n"); }
for (size_t i=0; i<size; i++) { if (report_minor) { printf("%zu... ", i); fflush(stdout); }
for (size_t j=0; j<size; j++) { // compute "\BigAnd (!board[i][k]) \or !board[i][j]" with k != j
temp = one; for (size_t k=0; k<size; k++) { if (j==k) continue; temp = sylvan_and(temp, sylvan_not(board[i*size+k])); } temp = sylvan_or(temp, sylvan_not(board[i*size+j])); // add cube to "res"
res = sylvan_and(res, temp); } }
if (report_minor) { printf("\n"); } if (report_minterms) { INFO("We have %.0f minterms\n", sylvan_satcount(res, vars)); } if (report_minor) { INFO("Encoding columns... "); } else { INFO("Encoding columns...\n"); }
for (size_t j=0; j<size; j++) { if (report_minor) { printf("%zu... ", j); fflush(stdout); }
for (size_t i=0; i<size; i++) { // compute "\BigAnd (!board[k][j]) \or !board[i][j]" with k != i
temp = one; for (size_t k=0; k<size; k++) { if (i==k) continue; temp = sylvan_and(temp, sylvan_not(board[k*size+j])); } temp = sylvan_or(temp, sylvan_not(board[i*size+j])); // add cube to "res"
res = sylvan_and(res, temp); } }
if (report_minor) { printf("\n"); } if (report_minterms) { INFO("We have %.0f minterms\n", sylvan_satcount(res, vars)); } if (report_minor) { INFO("Encoding rising diagonals... "); } else { INFO("Encoding rising diagonals...\n"); }
for (size_t i=0; i<size; i++) { if (report_minor) { printf("%zu... ", i); fflush(stdout); }
for (size_t j=0; j<size; j++) { temp = one; for (size_t k=0; k<size; k++) { // if (j+k-i >= 0 && j+k-i < size && k != i)
if (j+k >= i && j+k < size+i && k != i) { temp = sylvan_and(temp, sylvan_not(board[k*size + (j+k-i)])); } } temp = sylvan_or(temp, sylvan_not(board[i*size+j])); // add cube to "res"
res = sylvan_and(res, temp); } }
if (report_minor) { printf("\n"); } if (report_minterms) { INFO("We have %.0f minterms\n", sylvan_satcount(res, vars)); } if (report_minor) { INFO("Encoding falling diagonals... "); } else { INFO("Encoding falling diagonals...\n"); }
for (size_t i=0; i<size; i++) { if (report_minor) { printf("%zu... ", i); fflush(stdout); }
for (size_t j=0; j<size; j++) { temp = one; for (size_t k=0; k<size; k++) { // if (j+i-k >= 0 && j+i-k < size && k != i)
if (j+i >= k && j+i < size+k && k != i) { temp = sylvan_and(temp, sylvan_not(board[k*size + (j+i-k)])); } } temp = sylvan_or(temp, sylvan_not(board[i*size + j])); // add cube to "res"
res = sylvan_and(res, temp); } }
if (report_minor) { printf("\n"); } if (report_minterms) { INFO("We have %.0f minterms\n", sylvan_satcount(res, vars)); } if (report_minor) { INFO("Final computation to place a queen on every row... "); } else { INFO("Final computation to place a queen on every row...\n"); }
for (size_t i=0; i<size; i++) { if (report_minor) { printf("%zu... ", i); fflush(stdout); }
temp = zero; for (size_t j=0; j<size; j++) { temp = sylvan_or(temp, board[i*size+j]); } res = sylvan_and(res, temp); }
if (report_minor) { printf("\n"); }
double t2 = wctime(); #ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStop(); #endif
INFO("Result: NQueens(%zu) has %.0f solutions.\n", size, sylvan_satcount(res, vars)); INFO("Result BDD has %zu nodes.\n", sylvan_nodecount(res)); INFO("Computation time: %f sec.\n", t2-t1);
if (report_stats) { sylvan_stats_report(stdout); }
sylvan_quit(); lace_exit(); }
|