|
|
#include <argp.h>
#include <inttypes.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#ifdef HAVE_PROFILER
#include <gperftools/profiler.h>
#endif
#include <getrss.h>
#include <sylvan.h>
#include <sylvan_int.h>
/* Configuration (via argp) */ static int report_levels = 0; // report states at end of every level
static int report_table = 0; // report table size at end of every level
static int report_nodes = 0; // report number of nodes of BDDs
static int strategy = 2; // 0 = BFS, 1 = PAR, 2 = SAT, 3 = CHAINING
static int check_deadlocks = 0; // set to 1 to check for deadlocks on-the-fly (only bfs/par)
static int merge_relations = 0; // merge relations to 1 relation
static int print_transition_matrix = 0; // print transition relation matrix
static int workers = 0; // autodetect
static char* model_filename = NULL; // filename of model
#ifdef HAVE_PROFILER
static char* profile_filename = NULL; // filename for profiling
#endif
/* argp configuration */ static struct argp_option options[] = { {"workers", 'w', "<workers>", 0, "Number of workers (default=0: autodetect)", 0}, {"strategy", 's', "<bfs|par|sat|chaining>", 0, "Strategy for reachability (default=sat)", 0}, #ifdef HAVE_PROFILER
{"profiler", 'p', "<filename>", 0, "Filename for profiling", 0}, #endif
{"deadlocks", 3, 0, 0, "Check for deadlocks", 1}, {"count-nodes", 5, 0, 0, "Report #nodes for BDDs", 1}, {"count-states", 1, 0, 0, "Report #states at each level", 1}, {"count-table", 2, 0, 0, "Report table usage at each level", 1}, {"merge-relations", 6, 0, 0, "Merge transition relations into one transition relation", 1}, {"print-matrix", 4, 0, 0, "Print transition matrix", 1}, {0, 0, 0, 0, 0, 0} }; static error_t parse_opt(int key, char *arg, struct argp_state *state) { switch (key) { case 'w': workers = atoi(arg); break; case 's': if (strcmp(arg, "bfs")==0) strategy = 0; else if (strcmp(arg, "par")==0) strategy = 1; else if (strcmp(arg, "sat")==0) strategy = 2; else if (strcmp(arg, "chaining")==0) strategy = 3; else argp_usage(state); break; case 4: print_transition_matrix = 1; break; case 3: check_deadlocks = 1; break; case 1: report_levels = 1; break; case 2: report_table = 1; break; case 5: report_nodes = 1; break; case 6: merge_relations = 1; break; #ifdef HAVE_PROFILER
case 'p': profile_filename = arg; break; #endif
case ARGP_KEY_ARG: if (state->arg_num >= 1) argp_usage(state); model_filename = arg; break; case ARGP_KEY_END: if (state->arg_num < 1) argp_usage(state); break; default: return ARGP_ERR_UNKNOWN; } return 0; } static struct argp argp = { options, parse_opt, "<model>", 0, 0, 0, 0 };
/**
* Types (set and relation) */ typedef struct set { BDD bdd; BDD variables; // all variables in the set (used by satcount)
} *set_t;
typedef struct relation { BDD bdd; BDD variables; // all variables in the relation (used by relprod)
int r_k, w_k, *r_proj, *w_proj; } *rel_t;
static int vectorsize; // size of vector in integers
static int *statebits; // number of bits for each state integer
static int actionbits; // number of bits for action label
static int totalbits; // total number of bits
static int next_count; // number of partitions of the transition relation
static rel_t *next; // each partition of the transition relation
/**
* Obtain current wallclock time */ static double wctime() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec + 1E-6 * tv.tv_usec); }
static double t_start; #define INFO(s, ...) fprintf(stdout, "[% 8.2f] " s, wctime()-t_start, ##__VA_ARGS__)
#define Abort(...) { fprintf(stderr, __VA_ARGS__); fprintf(stderr, "Abort at line %d!\n", __LINE__); exit(-1); }
static char* to_h(double size, char *buf) { const char* units[] = {"B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"}; int i = 0; for (;size>1024;size/=1024) i++; sprintf(buf, "%.*f %s", i, size, units[i]); return buf; }
static void print_memory_usage(void) { char buf[32]; to_h(getCurrentRSS(), buf); INFO("Memory usage: %s\n", buf); }
/**
* Load a set from file * The expected binary format: * - int k : projection size, or -1 for full state * - int[k] proj : k integers specifying the variables of the projection * - MTBDD[1] BDD (mtbdd binary format) */ #define set_load(f) CALL(set_load, f)
TASK_1(set_t, set_load, FILE*, f) { // allocate set
set_t set = (set_t)malloc(sizeof(struct set)); set->bdd = sylvan_false; set->variables = sylvan_true; sylvan_protect(&set->bdd); sylvan_protect(&set->variables);
// read k
int k; if (fread(&k, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n");
if (k == -1) { // create variables for a full state vector
uint32_t vars[totalbits]; for (int i=0; i<totalbits; i++) vars[i] = 2*i; set->variables = sylvan_set_fromarray(vars, totalbits); } else { // read proj
int proj[k]; if (fread(proj, sizeof(int), k, f) != (size_t)k) Abort("Invalid input file!\n"); // create variables for a short/projected state vector
uint32_t vars[totalbits]; uint32_t cv = 0; int j = 0, n = 0; for (int i=0; i<vectorsize && j<k; i++) { if (i == proj[j]) { for (int x=0; x<statebits[i]; x++) vars[n++] = (cv += 2) - 2; j++; } else { cv += 2 * statebits[i]; } } set->variables = sylvan_set_fromarray(vars, n); }
// read bdd
if (mtbdd_reader_frombinary(f, &set->bdd, 1) != 0) Abort("Invalid input file!\n");
return set; }
/**
* Load a relation from file * This part just reads the r_k, w_k, r_proj and w_proj variables. */ #define rel_load_proj(f) CALL(rel_load_proj, f)
TASK_1(rel_t, rel_load_proj, FILE*, f) { rel_t rel = (rel_t)malloc(sizeof(struct relation)); int r_k, w_k; if (fread(&r_k, sizeof(int), 1, f) != 1) Abort("Invalid file format."); if (fread(&w_k, sizeof(int), 1, f) != 1) Abort("Invalid file format."); rel->r_k = r_k; rel->w_k = w_k; int *r_proj = (int*)malloc(sizeof(int[r_k])); int *w_proj = (int*)malloc(sizeof(int[w_k])); if (fread(r_proj, sizeof(int), r_k, f) != (size_t)r_k) Abort("Invalid file format."); if (fread(w_proj, sizeof(int), w_k, f) != (size_t)w_k) Abort("Invalid file format."); rel->r_proj = r_proj; rel->w_proj = w_proj;
rel->bdd = sylvan_false; sylvan_protect(&rel->bdd);
/* Compute a_proj the union of r_proj and w_proj, and a_k the length of a_proj */ int a_proj[r_k+w_k]; int r_i = 0, w_i = 0, a_i = 0; for (;r_i < r_k || w_i < w_k;) { if (r_i < r_k && w_i < w_k) { if (r_proj[r_i] < w_proj[w_i]) { a_proj[a_i++] = r_proj[r_i++]; } else if (r_proj[r_i] > w_proj[w_i]) { a_proj[a_i++] = w_proj[w_i++]; } else /* r_proj[r_i] == w_proj[w_i] */ { a_proj[a_i++] = w_proj[w_i++]; r_i++; } } else if (r_i < r_k) { a_proj[a_i++] = r_proj[r_i++]; } else if (w_i < w_k) { a_proj[a_i++] = w_proj[w_i++]; } } const int a_k = a_i;
/* Compute all_variables, which are all variables the transition relation is defined on */ uint32_t all_vars[totalbits * 2]; uint32_t curvar = 0; // start with variable 0
int i=0, j=0, n=0; for (; i<vectorsize && j<a_k; i++) { if (i == a_proj[j]) { for (int k=0; k<statebits[i]; k++) { all_vars[n++] = curvar; all_vars[n++] = curvar + 1; curvar += 2; } j++; } else { curvar += 2 * statebits[i]; } } rel->variables = sylvan_set_fromarray(all_vars, n); sylvan_protect(&rel->variables);
return rel; }
/**
* Load a relation from file * This part just reads the bdd of the relation */ #define rel_load(rel, f) CALL(rel_load, rel, f)
VOID_TASK_2(rel_load, rel_t, rel, FILE*, f) { if (mtbdd_reader_frombinary(f, &rel->bdd, 1) != 0) Abort("Invalid file format!\n"); }
/**
* Print a single example of a set to stdout * Assumption: the example is a full vector and variables contains all state variables... */ #define print_example(example, variables) CALL(print_example, example, variables)
VOID_TASK_2(print_example, BDD, example, BDDSET, variables) { uint8_t str[totalbits];
if (example != sylvan_false) { sylvan_sat_one(example, variables, str); int x=0; printf("["); for (int i=0; i<vectorsize; i++) { uint32_t res = 0; for (int j=0; j<statebits[i]; j++) { if (str[x++] == 1) res++; res <<= 1; } if (i>0) printf(","); printf("%" PRIu32, res); } printf("]"); } }
/**
* Implementation of (parallel) saturation * (assumes relations are ordered on first variable) */ TASK_2(BDD, go_sat, BDD, set, int, idx) { /* Terminal cases */ if (set == sylvan_false) return sylvan_false; if (idx == next_count) return set;
/* Consult the cache */ BDD result; const BDD _set = set; if (cache_get3(200LL<<40, _set, idx, 0, &result)) return result; mtbdd_refs_pushptr(&_set);
/**
* Possible improvement: cache more things (like intermediate results?) * and chain-apply more of the current level before going deeper? */
/* Check if the relation should be applied */ const uint32_t var = sylvan_var(next[idx]->variables); if (set == sylvan_true || var <= sylvan_var(set)) { /* Count the number of relations starting here */ int count = idx+1; while (count < next_count && var == sylvan_var(next[count]->variables)) count++; count -= idx; /*
* Compute until fixpoint: * - SAT deeper * - chain-apply all current level once */ BDD prev = sylvan_false; BDD step = sylvan_false; mtbdd_refs_pushptr(&set); mtbdd_refs_pushptr(&prev); mtbdd_refs_pushptr(&step); while (prev != set) { prev = set; // SAT deeper
set = CALL(go_sat, set, idx+count); // chain-apply all current level once
for (int i=0;i<count;i++) { step = sylvan_relnext(set, next[idx+i]->bdd, next[idx+i]->variables); set = sylvan_or(set, step); step = sylvan_false; // unset, for gc
} } mtbdd_refs_popptr(3); result = set; } else { /* Recursive computation */ mtbdd_refs_spawn(SPAWN(go_sat, sylvan_low(set), idx)); BDD high = mtbdd_refs_push(CALL(go_sat, sylvan_high(set), idx)); BDD low = mtbdd_refs_sync(SYNC(go_sat)); mtbdd_refs_pop(1); result = sylvan_makenode(sylvan_var(set), low, high); }
/* Store in cache */ cache_put3(200LL<<40, _set, idx, 0, result); mtbdd_refs_popptr(1); return result; }
/**
* Wrapper for the Saturation strategy */ VOID_TASK_1(sat, set_t, set) { set->bdd = CALL(go_sat, set->bdd, 0); }
/**
* Implement parallel strategy (that performs the relnext operations in parallel) * This function does one level... */ TASK_5(BDD, go_par, BDD, cur, BDD, visited, size_t, from, size_t, len, BDD*, deadlocks) { if (len == 1) { // Calculate NEW successors (not in visited)
BDD succ = sylvan_relnext(cur, next[from]->bdd, next[from]->variables); bdd_refs_push(succ); if (deadlocks) { // check which BDDs in deadlocks do not have a successor in this relation
BDD anc = sylvan_relprev(next[from]->bdd, succ, next[from]->variables); bdd_refs_push(anc); *deadlocks = sylvan_diff(*deadlocks, anc); bdd_refs_pop(1); } BDD result = sylvan_diff(succ, visited); bdd_refs_pop(1); return result; } else { BDD deadlocks_left; BDD deadlocks_right; if (deadlocks) { deadlocks_left = *deadlocks; deadlocks_right = *deadlocks; sylvan_protect(&deadlocks_left); sylvan_protect(&deadlocks_right); }
// Recursively calculate left+right
bdd_refs_spawn(SPAWN(go_par, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left: NULL)); BDD right = bdd_refs_push(CALL(go_par, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL)); BDD left = bdd_refs_push(bdd_refs_sync(SYNC(go_par)));
// Merge results of left+right
BDD result = sylvan_or(left, right); bdd_refs_pop(2);
if (deadlocks) { bdd_refs_push(result); *deadlocks = sylvan_and(deadlocks_left, deadlocks_right); sylvan_unprotect(&deadlocks_left); sylvan_unprotect(&deadlocks_right); bdd_refs_pop(1); }
return result; } }
/**
* Implementation of the PAR strategy */ VOID_TASK_1(par, set_t, set) { BDD visited = set->bdd; BDD next_level = visited; BDD cur_level = sylvan_false; BDD deadlocks = sylvan_false;
sylvan_protect(&visited); sylvan_protect(&next_level); sylvan_protect(&cur_level); sylvan_protect(&deadlocks);
int iteration = 1; do { // calculate successors in parallel
cur_level = next_level; deadlocks = cur_level;
next_level = CALL(go_par, cur_level, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL);
if (check_deadlocks && deadlocks != sylvan_false) { INFO("Found %'0.0f deadlock states... ", sylvan_satcount(deadlocks, set->variables)); if (deadlocks != sylvan_false) { printf("example: "); print_example(deadlocks, set->variables); check_deadlocks = 0; } printf("\n"); }
// visited = visited + new
visited = sylvan_or(visited, next_level);
if (report_table && report_levels) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, %'0.0f states explored, table: %0.1f%% full (%'zu nodes)\n", iteration, sylvan_satcount(visited, set->variables), 100.0*(double)filled/total, filled); } else if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, table: %0.1f%% full (%'zu nodes)\n", iteration, 100.0*(double)filled/total, filled); } else if (report_levels) { INFO("Level %d done, %'0.0f states explored\n", iteration, sylvan_satcount(visited, set->variables)); } else { INFO("Level %d done\n", iteration); } iteration++; } while (next_level != sylvan_false);
set->bdd = visited;
sylvan_unprotect(&visited); sylvan_unprotect(&next_level); sylvan_unprotect(&cur_level); sylvan_unprotect(&deadlocks); }
/**
* Implement sequential strategy (that performs the relnext operations one by one) * This function does one level... */ TASK_5(BDD, go_bfs, BDD, cur, BDD, visited, size_t, from, size_t, len, BDD*, deadlocks) { if (len == 1) { // Calculate NEW successors (not in visited)
BDD succ = sylvan_relnext(cur, next[from]->bdd, next[from]->variables); bdd_refs_push(succ); if (deadlocks) { // check which BDDs in deadlocks do not have a successor in this relation
BDD anc = sylvan_relprev(next[from]->bdd, succ, next[from]->variables); bdd_refs_push(anc); *deadlocks = sylvan_diff(*deadlocks, anc); bdd_refs_pop(1); } BDD result = sylvan_diff(succ, visited); bdd_refs_pop(1); return result; } else { BDD deadlocks_left; BDD deadlocks_right; if (deadlocks) { deadlocks_left = *deadlocks; deadlocks_right = *deadlocks; sylvan_protect(&deadlocks_left); sylvan_protect(&deadlocks_right); }
// Recursively calculate left+right
BDD left = CALL(go_bfs, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left : NULL); bdd_refs_push(left); BDD right = CALL(go_bfs, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL); bdd_refs_push(right);
// Merge results of left+right
BDD result = sylvan_or(left, right); bdd_refs_pop(2);
if (deadlocks) { bdd_refs_push(result); *deadlocks = sylvan_and(deadlocks_left, deadlocks_right); sylvan_unprotect(&deadlocks_left); sylvan_unprotect(&deadlocks_right); bdd_refs_pop(1); }
return result; } }
/**
* Implementation of the BFS strategy */ VOID_TASK_1(bfs, set_t, set) { BDD visited = set->bdd; BDD next_level = visited; BDD cur_level = sylvan_false; BDD deadlocks = sylvan_false;
sylvan_protect(&visited); sylvan_protect(&next_level); sylvan_protect(&cur_level); sylvan_protect(&deadlocks);
int iteration = 1; do { // calculate successors in parallel
cur_level = next_level; deadlocks = cur_level;
next_level = CALL(go_bfs, cur_level, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL);
if (check_deadlocks && deadlocks != sylvan_false) { INFO("Found %'0.0f deadlock states... ", sylvan_satcount(deadlocks, set->variables)); if (deadlocks != sylvan_false) { printf("example: "); print_example(deadlocks, set->variables); check_deadlocks = 0; } printf("\n"); }
// visited = visited + new
visited = sylvan_or(visited, next_level);
if (report_table && report_levels) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, %'0.0f states explored, table: %0.1f%% full (%'zu nodes)\n", iteration, sylvan_satcount(visited, set->variables), 100.0*(double)filled/total, filled); } else if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, table: %0.1f%% full (%'zu nodes)\n", iteration, 100.0*(double)filled/total, filled); } else if (report_levels) { INFO("Level %d done, %'0.0f states explored\n", iteration, sylvan_satcount(visited, set->variables)); } else { INFO("Level %d done\n", iteration); } iteration++; } while (next_level != sylvan_false);
set->bdd = visited;
sylvan_unprotect(&visited); sylvan_unprotect(&next_level); sylvan_unprotect(&cur_level); sylvan_unprotect(&deadlocks); }
/**
* Implementation of the Chaining strategy (does not support deadlock detection) */ VOID_TASK_1(chaining, set_t, set) { BDD visited = set->bdd; BDD next_level = visited; BDD succ = sylvan_false;
bdd_refs_pushptr(&visited); bdd_refs_pushptr(&next_level); bdd_refs_pushptr(&succ);
int iteration = 1; do { // calculate successors in parallel
for (int i=0; i<next_count; i++) { succ = sylvan_relnext(next_level, next[i]->bdd, next[i]->variables); next_level = sylvan_or(next_level, succ); succ = sylvan_false; // reset, for gc
}
// new = new - visited
// visited = visited + new
next_level = sylvan_diff(next_level, visited); visited = sylvan_or(visited, next_level);
if (report_table && report_levels) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, %'0.0f states explored, table: %0.1f%% full (%'zu nodes)\n", iteration, sylvan_satcount(visited, set->variables), 100.0*(double)filled/total, filled); } else if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, table: %0.1f%% full (%'zu nodes)\n", iteration, 100.0*(double)filled/total, filled); } else if (report_levels) { INFO("Level %d done, %'0.0f states explored\n", iteration, sylvan_satcount(visited, set->variables)); } else { INFO("Level %d done\n", iteration); } iteration++; } while (next_level != sylvan_false);
set->bdd = visited; bdd_refs_popptr(3); }
/**
* Extend a transition relation to a larger domain (using s=s') */ #define extend_relation(rel, vars) CALL(extend_relation, rel, vars)
TASK_2(BDD, extend_relation, MTBDD, relation, MTBDD, variables) { /* first determine which state BDD variables are in rel */ int has[totalbits]; for (int i=0; i<totalbits; i++) has[i] = 0; MTBDD s = variables; while (!sylvan_set_isempty(s)) { uint32_t v = sylvan_set_first(s); if (v/2 >= (unsigned)totalbits) break; // action labels
has[v/2] = 1; s = sylvan_set_next(s); }
/* create "s=s'" for all variables not in rel */ BDD eq = sylvan_true; for (int i=totalbits-1; i>=0; i--) { if (has[i]) continue; BDD low = sylvan_makenode(2*i+1, eq, sylvan_false); bdd_refs_push(low); BDD high = sylvan_makenode(2*i+1, sylvan_false, eq); bdd_refs_pop(1); eq = sylvan_makenode(2*i, low, high); }
bdd_refs_push(eq); BDD result = sylvan_and(relation, eq); bdd_refs_pop(1);
return result; }
/**
* Compute \BigUnion ( sets[i] ) */ #define big_union(first, count) CALL(big_union, first, count)
TASK_2(BDD, big_union, int, first, int, count) { if (count == 1) return next[first]->bdd;
bdd_refs_spawn(SPAWN(big_union, first, count/2)); BDD right = bdd_refs_push(CALL(big_union, first+count/2, count-count/2)); BDD left = bdd_refs_push(bdd_refs_sync(SYNC(big_union))); BDD result = sylvan_or(left, right); bdd_refs_pop(2); return result; }
/**
* Print one row of the transition matrix (for vars) */ static void print_matrix_row(rel_t rel) { int r_i = 0, w_i = 0; for (int i=0; i<vectorsize; i++) { int s = 0; if (r_i < rel->r_k && rel->r_proj[r_i] == i) { s |= 1; r_i++; } if (w_i < rel->w_k && rel->w_proj[w_i] == i) { s |= 2; w_i++; } if (s == 0) fprintf(stdout, "-"); else if (s == 1) fprintf(stdout, "r"); else if (s == 2) fprintf(stdout, "w"); else if (s == 3) fprintf(stdout, "+"); } }
VOID_TASK_0(gc_start) { char buf[32]; to_h(getCurrentRSS(), buf); INFO("(GC) Starting garbage collection... (rss: %s)\n", buf); }
VOID_TASK_0(gc_end) { char buf[32]; to_h(getCurrentRSS(), buf); INFO("(GC) Garbage collection done. (rss: %s)\n", buf); }
int main(int argc, char **argv) { /**
* Parse command line, set locale, set startup time for INFO messages. */ argp_parse(&argp, argc, argv, 0, 0, 0); setlocale(LC_NUMERIC, "en_US.utf-8"); t_start = wctime();
/**
* Initialize Lace. * * First: setup with given number of workers (0 for autodetect) and some large size task queue. * Second: start all worker threads with default settings. * Third: setup local variables using the LACE_ME macro. */ lace_init(workers, 1000000); lace_startup(0, NULL, NULL); LACE_ME;
/**
* Initialize Sylvan. * * First: set memory limits * - 2 GB memory, nodes table twice as big as cache, initial size halved 6x * (that means it takes 6 garbage collections to get to the maximum nodes&cache size) * Second: initialize package and subpackages * Third: add hooks to report garbage collection */ sylvan_set_limits(2LL<<30, 1, 6); sylvan_init_package(); sylvan_init_bdd(); sylvan_gc_hook_pregc(TASK(gc_start)); sylvan_gc_hook_postgc(TASK(gc_end));
/**
* Read the model from file */
/* Open the file */ FILE *f = fopen(model_filename, "r"); if (f == NULL) Abort("Cannot open file '%s'!\n", model_filename);
/* Read domain data */ if (fread(&vectorsize, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n"); statebits = (int*)malloc(sizeof(int[vectorsize])); if (fread(statebits, sizeof(int), vectorsize, f) != (size_t)vectorsize) Abort("Invalid input file!\n"); if (fread(&actionbits, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n"); totalbits = 0; for (int i=0; i<vectorsize; i++) totalbits += statebits[i];
/* Read initial state */ set_t states = set_load(f);
/* Read number of transition relations */ if (fread(&next_count, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n"); next = (rel_t*)malloc(sizeof(rel_t) * next_count);
/* Read transition relations */ for (int i=0; i<next_count; i++) next[i] = rel_load_proj(f); for (int i=0; i<next_count; i++) rel_load(next[i], f);
/* We ignore the reachable states and action labels that are stored after the relations */
/* Close the file */ fclose(f);
/**
* Pre-processing and some statistics reporting */
if (strategy == 2 || strategy == 3) { // for SAT and CHAINING, sort the transition relations (gnome sort because I like gnomes)
int i = 1, j = 2; rel_t t; while (i < next_count) { rel_t *p = &next[i], *q = p-1; if (sylvan_var((*q)->variables) > sylvan_var((*p)->variables)) { t = *q; *q = *p; *p = t; if (--i) continue; } i = j++; } }
INFO("Read file '%s'\n", model_filename); INFO("%d integers per state, %d bits per state, %d transition groups\n", vectorsize, totalbits, next_count);
/* if requested, print the transition matrix */ if (print_transition_matrix) { for (int i=0; i<next_count; i++) { INFO(""); // print time prefix
print_matrix_row(next[i]); // print row
fprintf(stdout, "\n"); // print newline
} }
/* merge all relations to one big transition relation if requested */ if (merge_relations) { BDD newvars = sylvan_set_empty(); bdd_refs_pushptr(&newvars); for (int i=totalbits-1; i>=0; i--) { newvars = sylvan_set_add(newvars, i*2+1); newvars = sylvan_set_add(newvars, i*2); }
INFO("Extending transition relations to full domain.\n"); for (int i=0; i<next_count; i++) { next[i]->bdd = extend_relation(next[i]->bdd, next[i]->variables); next[i]->variables = newvars; }
bdd_refs_popptr(1);
INFO("Taking union of all transition relations.\n"); next[0]->bdd = big_union(0, next_count);
for (int i=1; i<next_count; i++) { next[i]->bdd = sylvan_false; next[i]->variables = sylvan_true; } next_count = 1; }
if (report_nodes) { INFO("BDD nodes:\n"); INFO("Initial states: %zu BDD nodes\n", sylvan_nodecount(states->bdd)); for (int i=0; i<next_count; i++) { INFO("Transition %d: %zu BDD nodes\n", i, sylvan_nodecount(next[i]->bdd)); } }
print_memory_usage();
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStart(profile_filename); #endif
if (strategy == 0) { double t1 = wctime(); CALL(bfs, states); double t2 = wctime(); INFO("BFS Time: %f\n", t2-t1); } else if (strategy == 1) { double t1 = wctime(); CALL(par, states); double t2 = wctime(); INFO("PAR Time: %f\n", t2-t1); } else if (strategy == 2) { double t1 = wctime(); CALL(sat, states); double t2 = wctime(); INFO("SAT Time: %f\n", t2-t1); } else if (strategy == 3) { double t1 = wctime(); CALL(chaining, states); double t2 = wctime(); INFO("CHAINING Time: %f\n", t2-t1); } else { Abort("Invalid strategy set?!\n"); }
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStop(); #endif
// Now we just have states
INFO("Final states: %'0.0f states\n", sylvan_satcount(states->bdd, states->variables)); if (report_nodes) { INFO("Final states: %'zu BDD nodes\n", sylvan_nodecount(states->bdd)); }
print_memory_usage();
sylvan_stats_report(stdout);
return 0; }
|