|
|
/* Covering code generator, especially for football pool systems */
/* Written and converted to GNU MathProg by NASZVADI, Peter, 199x-2017 <vuk@cs.elte.hu> */
/* Looks up for minimal covering codes in the specified Hamming-space. Without specifying model data, by default it looks up for covering for a mixed covering code in Hamming-space {X, 1, 2, 3}*{X, 1}^4 with one layer.
Hamming space is a set of finite words with all the same length over a finite alphabet: the space could be decomposed to Cartesian products of subsets of the alphabet, e.g. the first letter of an element can be chosen from a 2-element set, the next from 6 letters, and so on.
There is a natural metric function in these spaces: the Hamming-distance (hence the name, from now referred as: distance). The distance of two (equal-length) words is the number of different letter pairs in the corresponding positions.
Covering Hamming-spaces with minimal number of spheres with given radius - usually difficult problem excluding special cases.
Relationship with sports: Football pool system in Hungarian: "Toto'kulcs", so Toto, totogol and other football pool systems are usually need mixed ternary/binary code coverings in order to minimize loss of the gambler.
See more at: https://en.wikipedia.org/wiki/Covering_code
A tricky workaround is used: floor(), abs() and cosine() magic are used at 'coverings' constraints, because GMPL lacks proper boolean<->integer evaluation/casting. */
param ArgNum1, >= 1, default 1; param ArgNum2, >= 1, default 1; param ArgNum3, >= 1, default 1; param ArgNum4, >= 1, default 1; param ArgNum5, >= 1, default 1; param ArgNum6, >= 1, default 1; param ArgNum7, >= 1, default 1; param ArgNum8, >= 1, default 1; param ArgNum9, >= 1, default 1; param ArgNum10, >= 1, default 1; param ArgNum11, >= 1, default 1; param ArgNum12, >= 1, default 1; param ArgNum13, >= 1, default 1; /* at most 13 matches' outcomes */
param Radius, >= 1, default 1; /* covering radius */
param Layer, >= 1, default 1; /* each point of space must be covered at least Layer times */
set X := 0..ArgNum1 - 1 cross 0..ArgNum2 - 1 cross 0..ArgNum3 - 1 cross 0..ArgNum4 - 1 cross 0..ArgNum5 - 1 cross 0..ArgNum6 - 1 cross 0..ArgNum7 - 1 cross 0..ArgNum8 - 1 cross 0..ArgNum9 - 1 cross 0..ArgNum10 - 1 cross 0..ArgNum11 - 1 cross 0..ArgNum12 - 1 cross 0..ArgNum13 - 1; /* the Hamming-space generated by the Cartesian-products of sets with elements ArgNum[n] */
var x{X}, integer, >=0; /* denotes each point's amount of containing covering sets */
var objvalue;
s.t. coverings{(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13) in X}: sum{(j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13) in X: floor(abs(cos(i1 - j1))) + floor(abs(cos(i2 - j2))) + floor(abs(cos(i3 - j3))) + floor(abs(cos(i4 - j4))) + floor(abs(cos(i5 - j5))) + floor(abs(cos(i6 - j6))) + floor(abs(cos(i7 - j7))) + floor(abs(cos(i8 - j8))) + floor(abs(cos(i9 - j9))) + floor(abs(cos(i10 - j10))) + floor(abs(cos(i11 - j11))) + floor(abs(cos(i12 - j12))) + floor(abs(cos(i13 - j13))) >= 13 - Radius } x[j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13] >= Layer; /* covering constraints, select at least 'Layer' amount of spheres that cover (i1,i2,...) and has radius 'Radius' */
s.t. oneisset: x[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] >= 1; /* this does not violate symmetry nor excludes important solutions but boosts the solving process */
s.t. objc: sum{(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13) in X} x[i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13] = objvalue; /* the total number of pools (covering sets) */
minimize obj: objvalue; /* Also 'objc' could be used directly instead of 'obj', but for experiments, it is useful to set up additional constraints for introduced objvalue variable */
solve;
printf 'Solution: %s\nRadius: %s\nLayer: %s\n', objvalue.val, Radius, Layer; /* report important scalars */
printf 'Selected bets:\n'; for{(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13) in X: x[i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13]}{ printf ' Times %s:', x[i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13].val; printf '%s', if ArgNum1 == 1 then '' else ' ' & if i1 then i1 else 'X'; printf '%s', if ArgNum2 == 1 then '' else '-' & if i2 then i2 else 'X'; printf '%s', if ArgNum3 == 1 then '' else '-' & if i3 then i3 else 'X'; printf '%s', if ArgNum4 == 1 then '' else '-' & if i4 then i4 else 'X'; printf '%s', if ArgNum5 == 1 then '' else '-' & if i5 then i5 else 'X'; printf '%s', if ArgNum6 == 1 then '' else '-' & if i6 then i6 else 'X'; printf '%s', if ArgNum7 == 1 then '' else '-' & if i7 then i7 else 'X'; printf '%s', if ArgNum8 == 1 then '' else '-' & if i8 then i8 else 'X'; printf '%s', if ArgNum9 == 1 then '' else '-' & if i9 then i9 else 'X'; printf '%s', if ArgNum10 == 1 then '' else '-' & if i10 then i10 else 'X'; printf '%s', if ArgNum11 == 1 then '' else '-' & if i11 then i11 else 'X'; printf '%s', if ArgNum12 == 1 then '' else '-' & if i12 then i12 else 'X'; printf '%s', if ArgNum13 == 1 then '' else '-' & if i13 then i13 else 'X'; printf '\n'; } /* pretty-print a generated football pool system (covering code) */
data;
param ArgNum1 := 4; param ArgNum2 := 2; param ArgNum3 := 2; param ArgNum4 := 2; param ArgNum5 := 2;
end;
|