|
|
/* A solver for the Japanese number-puzzle Shikaku * http://en.wikipedia.org/wiki/Shikaku * * Sebastian Nowozin <nowozin@gmail.com>, 27th January 2009 */
param ndim := 10; set rows := 1..ndim; set rows1 := 1..(ndim+1); set cols := 1..ndim; set cols1 := 1..(ndim+1); param givens{rows, cols}, integer, >= 0, default 0;
/* Set of vertices as (row,col) coordinates */ set V := { (i,j) in { rows, cols }: givens[i,j] != 0 };
/* Set of all feasible boxes of the right size: only this boxes are possible. * The box contains (i,j) and ranges from (k,l) to (m,n) */ set B := { (i,j,k,l,m,n) in { V, rows, cols, rows1, cols1 }: i >= k and i < m and j >= l and j < n and /* Contains (i,j) */ ((m-k)*(n-l)) = givens[i,j] and /* Right size */ card({ (s,t) in V: s >= k and s < m and t >= l and t < n }) = 1 /* Contains only (i,j), no other number */ };
var x{B}, binary;
/* Cover each square exactly once */ s.t. cover_once{ (s,t) in { rows, cols } }: sum{(i,j,k,l,m,n) in B: s >= k and s < m and t >= l and t < n} x[i,j,k,l,m,n] = 1;
minimize cost: 0;
solve;
/* Output solution graphically */ printf "\nSolution:\n"; for { row in rows1 } { for { col in cols1 } { printf{0..0: card({(i,j,k,l,m,n) in B: col >= l and col <= n and (row = k or row = m) and x[i,j,k,l,m,n] = 1}) > 0 and card({(i,j,k,l,m,n) in B: row >= k and row <= m and (col = l or col = n) and x[i,j,k,l,m,n] = 1}) > 0} "+"; printf{0..0: card({(i,j,k,l,m,n) in B: col >= l and col <= n and (row = k or row = m) and x[i,j,k,l,m,n] = 1}) = 0 and card({(i,j,k,l,m,n) in B: row >= k and row <= m and (col = l or col = n) and x[i,j,k,l,m,n] = 1}) > 0} "|"; printf{0..0: card({(i,j,k,l,m,n) in B: row >= k and row <= m and (col = l or col = n) and x[i,j,k,l,m,n] = 1}) = 0 and card({(i,j,k,l,m,n) in B: col >= l and col <= n and (row = k or row = m) and x[i,j,k,l,m,n] = 1}) > 0} "-"; printf{0..0: card({(i,j,k,l,m,n) in B: row >= k and row <= m and (col = l or col = n) and x[i,j,k,l,m,n] = 1}) = 0 and card({(i,j,k,l,m,n) in B: col >= l and col <= n and (row = k or row = m) and x[i,j,k,l,m,n] = 1}) = 0} " ";
printf{0..0: card({(i,j,k,l,m,n) in B: col >= l and col < n and (row = k or row = m) and x[i,j,k,l,m,n] = 1}) > 0} "---"; printf{0..0: card({(i,j,k,l,m,n) in B: col >= l and col < n and (row = k or row = m) and x[i,j,k,l,m,n] = 1}) = 0} " "; } printf "\n";
for { (col,p) in { cols, 1 }: card({ s in rows: s = row }) = 1 } { printf{0..0: card({(i,j,k,l,m,n) in B: row >= k and row < m and (col = l or col = n) and x[i,j,k,l,m,n] = 1}) > 0} "|"; printf{0..0: card({(i,j,k,l,m,n) in B: row >= k and row < m and (col = l or col = n) and x[i,j,k,l,m,n] = 1}) = 0} " "; printf{0..0: card({ (i,j) in V: i = row and j = col}) > 0} " %2d", givens[row,col]; printf{0..0: card({ (i,j) in V: i = row and j = col}) = 0} " ."; } printf{0..0: card({ r in rows: r = row }) = 1} "|\n"; }
data;
/* This Shikaku is from * http://www.emn.fr/x-info/sdemasse/gccat/KShikaku.html#uid5449 */ param givens : 1 2 3 4 5 6 7 8 9 10 := 1 9 . . . 12 . . 5 . . 2 . . . . . . . . . . 3 . . . . . . . . . 6 4 8 . 6 . 8 . . . . . 5 . . . . . . . . . . 6 . . . . . . . . . . 7 . . . . . 6 . 8 . 12 8 4 . . . . . . . . . 9 . . . . . . . . . . 10 . . 3 . . 9 . . . 4 ;
end;
|