|
|
/* SAT, Satisfiability Problem */
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
param m, integer, > 0; /* number of clauses */
param n, integer, > 0; /* number of variables */
set C{1..m}; /* clauses; each clause C[i], i = 1, ..., m, is disjunction of some variables or their negations; in the data section each clause is coded as a set of indices of corresponding variables, where negative indices mean negation; for example, the clause (x3 or not x7 or x11) is coded as the set { 3, -7, 11 } */
var x{1..n}, binary; /* main variables */
/* To solve the satisfiability problem means to determine all variables x[j] such that conjunction of all clauses C[1] and ... and C[m] takes on the value true, i.e. all clauses are satisfied.
Let the clause C[i] be (t or t' or ... or t''), where t, t', ..., t'' are either variables or their negations. The condition of satisfying C[i] can be most naturally written as:
t + t' + ... + t'' >= 1, (1)
where t, t', t'' have to be replaced by either x[j] or (1 - x[j]). The formulation (1) leads to the mip problem with no objective, i.e. to a feasibility problem.
Another, more practical way is to write the condition for C[i] as:
t + t' + ... + t'' + y[i] >= 1, (2)
where y[i] is an auxiliary binary variable, and minimize the sum of y[i]. If the sum is zero, all y[i] are also zero, and therefore all clauses are satisfied. If the sum is minimal but non-zero, its value shows the number of clauses which cannot be satisfied. */
var y{1..m}, binary, >= 0; /* auxiliary variables */
s.t. c{i in 1..m}: sum{j in C[i]} (if j > 0 then x[j] else (1 - x[-j])) + y[i] >= 1; /* the condition (2) */
minimize unsat: sum{i in 1..m} y[i]; /* number of unsatisfied clauses */
data;
/* These data correspond to the instance hole6 (pigeon hole problem for 6 holes) from SATLIB, the Satisfiability Library, which is part of the collection at the Forschungsinstitut fuer anwendungsorientierte Wissensverarbeitung in Ulm Germany */
/* The optimal solution is 1 (one clause cannot be satisfied) */
param m := 133;
param n := 42;
set C[1] := -1 -7; set C[2] := -1 -13; set C[3] := -1 -19; set C[4] := -1 -25; set C[5] := -1 -31; set C[6] := -1 -37; set C[7] := -7 -13; set C[8] := -7 -19; set C[9] := -7 -25; set C[10] := -7 -31; set C[11] := -7 -37; set C[12] := -13 -19; set C[13] := -13 -25; set C[14] := -13 -31; set C[15] := -13 -37; set C[16] := -19 -25; set C[17] := -19 -31; set C[18] := -19 -37; set C[19] := -25 -31; set C[20] := -25 -37; set C[21] := -31 -37; set C[22] := -2 -8; set C[23] := -2 -14; set C[24] := -2 -20; set C[25] := -2 -26; set C[26] := -2 -32; set C[27] := -2 -38; set C[28] := -8 -14; set C[29] := -8 -20; set C[30] := -8 -26; set C[31] := -8 -32; set C[32] := -8 -38; set C[33] := -14 -20; set C[34] := -14 -26; set C[35] := -14 -32; set C[36] := -14 -38; set C[37] := -20 -26; set C[38] := -20 -32; set C[39] := -20 -38; set C[40] := -26 -32; set C[41] := -26 -38; set C[42] := -32 -38; set C[43] := -3 -9; set C[44] := -3 -15; set C[45] := -3 -21; set C[46] := -3 -27; set C[47] := -3 -33; set C[48] := -3 -39; set C[49] := -9 -15; set C[50] := -9 -21; set C[51] := -9 -27; set C[52] := -9 -33; set C[53] := -9 -39; set C[54] := -15 -21; set C[55] := -15 -27; set C[56] := -15 -33; set C[57] := -15 -39; set C[58] := -21 -27; set C[59] := -21 -33; set C[60] := -21 -39; set C[61] := -27 -33; set C[62] := -27 -39; set C[63] := -33 -39; set C[64] := -4 -10; set C[65] := -4 -16; set C[66] := -4 -22; set C[67] := -4 -28; set C[68] := -4 -34; set C[69] := -4 -40; set C[70] := -10 -16; set C[71] := -10 -22; set C[72] := -10 -28; set C[73] := -10 -34; set C[74] := -10 -40; set C[75] := -16 -22; set C[76] := -16 -28; set C[77] := -16 -34; set C[78] := -16 -40; set C[79] := -22 -28; set C[80] := -22 -34; set C[81] := -22 -40; set C[82] := -28 -34; set C[83] := -28 -40; set C[84] := -34 -40; set C[85] := -5 -11; set C[86] := -5 -17; set C[87] := -5 -23; set C[88] := -5 -29; set C[89] := -5 -35; set C[90] := -5 -41; set C[91] := -11 -17; set C[92] := -11 -23; set C[93] := -11 -29; set C[94] := -11 -35; set C[95] := -11 -41; set C[96] := -17 -23; set C[97] := -17 -29; set C[98] := -17 -35; set C[99] := -17 -41; set C[100] := -23 -29; set C[101] := -23 -35; set C[102] := -23 -41; set C[103] := -29 -35; set C[104] := -29 -41; set C[105] := -35 -41; set C[106] := -6 -12; set C[107] := -6 -18; set C[108] := -6 -24; set C[109] := -6 -30; set C[110] := -6 -36; set C[111] := -6 -42; set C[112] := -12 -18; set C[113] := -12 -24; set C[114] := -12 -30; set C[115] := -12 -36; set C[116] := -12 -42; set C[117] := -18 -24; set C[118] := -18 -30; set C[119] := -18 -36; set C[120] := -18 -42; set C[121] := -24 -30; set C[122] := -24 -36; set C[123] := -24 -42; set C[124] := -30 -36; set C[125] := -30 -42; set C[126] := -36 -42; set C[127] := 6 5 4 3 2 1; set C[128] := 12 11 10 9 8 7; set C[129] := 18 17 16 15 14 13; set C[130] := 24 23 22 21 20 19; set C[131] := 30 29 28 27 26 25; set C[132] := 36 35 34 33 32 31; set C[133] := 42 41 40 39 38 37;
end;
|