|
|
/*
tests/test_virtual_functions.cpp -- overriding virtual functions from Python
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/functional.h>
/* This is an example class that we'll want to be able to extend from Python */ class ExampleVirt { public: ExampleVirt(int state) : state(state) { print_created(this, state); } ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); } ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; } ~ExampleVirt() { print_destroyed(this); }
virtual int run(int value) { py::print("Original implementation of " "ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2())); return state + value; }
virtual bool run_bool() = 0; virtual void pure_virtual() = 0;
// Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a
// bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so
// we have to handle it specially in the trampoline class (see below).
virtual const std::string &get_string1() { return str1; } virtual const std::string *get_string2() { return &str2; }
private: int state; const std::string str1{"default1"}, str2{"default2"}; };
/* This is a wrapper class that must be generated */ class PyExampleVirt : public ExampleVirt { public: using ExampleVirt::ExampleVirt; /* Inherit constructors */
int run(int value) override { /* Generate wrapping code that enables native function overloading */ PYBIND11_OVERLOAD( int, /* Return type */ ExampleVirt, /* Parent class */ run, /* Name of function */ value /* Argument(s) */ ); }
bool run_bool() override { PYBIND11_OVERLOAD_PURE( bool, /* Return type */ ExampleVirt, /* Parent class */ run_bool, /* Name of function */ /* This function has no arguments. The trailing comma
in the previous line is needed for some compilers */ ); }
void pure_virtual() override { PYBIND11_OVERLOAD_PURE( void, /* Return type */ ExampleVirt, /* Parent class */ pure_virtual, /* Name of function */ /* This function has no arguments. The trailing comma
in the previous line is needed for some compilers */ ); }
// We can return reference types for compatibility with C++ virtual interfaces that do so, but
// note they have some significant limitations (see the documentation).
const std::string &get_string1() override { PYBIND11_OVERLOAD( const std::string &, /* Return type */ ExampleVirt, /* Parent class */ get_string1, /* Name of function */ /* (no arguments) */ ); }
const std::string *get_string2() override { PYBIND11_OVERLOAD( const std::string *, /* Return type */ ExampleVirt, /* Parent class */ get_string2, /* Name of function */ /* (no arguments) */ ); }
};
class NonCopyable { public: NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); } NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); } NonCopyable(const NonCopyable &) = delete; NonCopyable() = delete; void operator=(const NonCopyable &) = delete; void operator=(NonCopyable &&) = delete; std::string get_value() const { if (value) return std::to_string(*value); else return "(null)"; } ~NonCopyable() { print_destroyed(this); }
private: std::unique_ptr<int> value; };
// This is like the above, but is both copy and movable. In effect this means it should get moved
// when it is not referenced elsewhere, but copied if it is still referenced.
class Movable { public: Movable(int a, int b) : value{a+b} { print_created(this, a, b); } Movable(const Movable &m) { value = m.value; print_copy_created(this); } Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); } std::string get_value() const { return std::to_string(value); } ~Movable() { print_destroyed(this); } private: int value; };
class NCVirt { public: virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); } virtual Movable get_movable(int a, int b) = 0;
std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); } std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); } }; class NCVirtTrampoline : public NCVirt { #if !defined(__INTEL_COMPILER)
NonCopyable get_noncopyable(int a, int b) override { PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b); } #endif
Movable get_movable(int a, int b) override { PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b); } };
int runExampleVirt(ExampleVirt *ex, int value) { return ex->run(value); }
bool runExampleVirtBool(ExampleVirt* ex) { return ex->run_bool(); }
void runExampleVirtVirtual(ExampleVirt *ex) { ex->pure_virtual(); }
// Inheriting virtual methods. We do two versions here: the repeat-everything version and the
// templated trampoline versions mentioned in docs/advanced.rst.
//
// These base classes are exactly the same, but we technically need distinct
// classes for this example code because we need to be able to bind them
// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to
// multiple python classes).
class A_Repeat { #define A_METHODS \
public: \ virtual int unlucky_number() = 0; \ virtual std::string say_something(unsigned times) { \ std::string s = ""; \ for (unsigned i = 0; i < times; ++i) \ s += "hi"; \ return s; \ } \ std::string say_everything() { \ return say_something(1) + " " + std::to_string(unlucky_number()); \ } A_METHODS }; class B_Repeat : public A_Repeat { #define B_METHODS \
public: \ int unlucky_number() override { return 13; } \ std::string say_something(unsigned times) override { \ return "B says hi " + std::to_string(times) + " times"; \ } \ virtual double lucky_number() { return 7.0; } B_METHODS }; class C_Repeat : public B_Repeat { #define C_METHODS \
public: \ int unlucky_number() override { return 4444; } \ double lucky_number() override { return 888; } C_METHODS }; class D_Repeat : public C_Repeat { #define D_METHODS // Nothing overridden.
D_METHODS };
// Base classes for templated inheritance trampolines. Identical to the repeat-everything version:
class A_Tpl { A_METHODS }; class B_Tpl : public A_Tpl { B_METHODS }; class C_Tpl : public B_Tpl { C_METHODS }; class D_Tpl : public C_Tpl { D_METHODS };
// Inheritance approach 1: each trampoline gets every virtual method (11 in total)
class PyA_Repeat : public A_Repeat { public: using A_Repeat::A_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); } }; class PyB_Repeat : public B_Repeat { public: using B_Repeat::B_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); } }; class PyC_Repeat : public C_Repeat { public: using C_Repeat::C_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); } }; class PyD_Repeat : public D_Repeat { public: using D_Repeat::D_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); } };
// Inheritance approach 2: templated trampoline classes.
//
// Advantages:
// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for
// any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11
// methods (repeat).
// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can
// properly inherit constructors.
//
// Disadvantage:
// - the compiler must still generate and compile 14 different methods (more, even, than the 11
// required for the repeat approach) instead of the 6 required for MI. (If there was no pure
// method (or no pure method override), the number would drop down to the same 11 as the repeat
// approach).
template <class Base = A_Tpl> class PyA_Tpl : public Base { public: using Base::Base; // Inherit constructors
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); } }; template <class Base = B_Tpl> class PyB_Tpl : public PyA_Tpl<Base> { public: using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors)
int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); } double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); } }; // Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can
// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead):
/*
template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> { public: using PyB_Tpl<Base>::PyB_Tpl; }; template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> { public: using PyC_Tpl<Base>::PyC_Tpl; }; */
void initialize_inherited_virtuals(py::module &m) { // Method 1: repeat
py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat") .def(py::init<>()) .def("unlucky_number", &A_Repeat::unlucky_number) .def("say_something", &A_Repeat::say_something) .def("say_everything", &A_Repeat::say_everything); py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat") .def(py::init<>()) .def("lucky_number", &B_Repeat::lucky_number); py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat") .def(py::init<>()); py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat") .def(py::init<>());
// Method 2: Templated trampolines
py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl") .def(py::init<>()) .def("unlucky_number", &A_Tpl::unlucky_number) .def("say_something", &A_Tpl::say_something) .def("say_everything", &A_Tpl::say_everything); py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl") .def(py::init<>()) .def("lucky_number", &B_Tpl::lucky_number); py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl") .def(py::init<>()); py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl") .def(py::init<>());
};
struct Base { /* for some reason MSVC2015 can't compile this if the function is pure virtual */ virtual std::string dispatch() const { return {}; }; };
struct DispatchIssue : Base { virtual std::string dispatch() const { PYBIND11_OVERLOAD_PURE(std::string, Base, dispatch, /* no arguments */); } };
TEST_SUBMODULE(virtual_functions, m) { py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt") .def(py::init<int>()) /* Reference original class in function definitions */ .def("run", &ExampleVirt::run) .def("run_bool", &ExampleVirt::run_bool) .def("pure_virtual", &ExampleVirt::pure_virtual);
py::class_<NonCopyable>(m, "NonCopyable") .def(py::init<int, int>());
py::class_<Movable>(m, "Movable") .def(py::init<int, int>());
#if !defined(__INTEL_COMPILER)
py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt") .def(py::init<>()) .def("get_noncopyable", &NCVirt::get_noncopyable) .def("get_movable", &NCVirt::get_movable) .def("print_nc", &NCVirt::print_nc) .def("print_movable", &NCVirt::print_movable); #endif
m.def("runExampleVirt", &runExampleVirt); m.def("runExampleVirtBool", &runExampleVirtBool); m.def("runExampleVirtVirtual", &runExampleVirtVirtual);
m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>); initialize_inherited_virtuals(m);
// test_alias_delay_initialization1
// don't invoke Python dispatch classes by default when instantiating C++ classes
// that were not extended on the Python side
struct A { virtual ~A() {} virtual void f() { py::print("A.f()"); } };
struct PyA : A { PyA() { py::print("PyA.PyA()"); } ~PyA() { py::print("PyA.~PyA()"); }
void f() override { py::print("PyA.f()"); PYBIND11_OVERLOAD(void, A, f); } };
py::class_<A, PyA>(m, "A") .def(py::init<>()) .def("f", &A::f);
m.def("call_f", [](A *a) { a->f(); });
// test_alias_delay_initialization2
// ... unless we explicitly request it, as in this example:
struct A2 { virtual ~A2() {} virtual void f() { py::print("A2.f()"); } };
struct PyA2 : A2 { PyA2() { py::print("PyA2.PyA2()"); } ~PyA2() { py::print("PyA2.~PyA2()"); } void f() override { py::print("PyA2.f()"); PYBIND11_OVERLOAD(void, A2, f); } };
py::class_<A2, PyA2>(m, "A2") .def(py::init_alias<>()) .def("f", &A2::f);
m.def("call_f", [](A2 *a2) { a2->f(); });
// #159: virtual function dispatch has problems with similar-named functions
py::class_<Base, DispatchIssue>(m, "DispatchIssue") .def(py::init<>()) .def("dispatch", &Base::dispatch);
m.def("dispatch_issue_go", [](const Base * b) { return b->dispatch(); });
// #392/397: overridding reference-returning functions
class OverrideTest { public: struct A { std::string value = "hi"; }; std::string v; A a; explicit OverrideTest(const std::string &v) : v{v} {} virtual std::string str_value() { return v; } virtual std::string &str_ref() { return v; } virtual A A_value() { return a; } virtual A &A_ref() { return a; } };
class PyOverrideTest : public OverrideTest { public: using OverrideTest::OverrideTest; std::string str_value() override { PYBIND11_OVERLOAD(std::string, OverrideTest, str_value); } // Not allowed (uncommenting should hit a static_assert failure): we can't get a reference
// to a python numeric value, since we only copy values in the numeric type caster:
// std::string &str_ref() override { PYBIND11_OVERLOAD(std::string &, OverrideTest, str_ref); }
// But we can work around it like this:
private: std::string _tmp; std::string str_ref_helper() { PYBIND11_OVERLOAD(std::string, OverrideTest, str_ref); } public: std::string &str_ref() override { return _tmp = str_ref_helper(); }
A A_value() override { PYBIND11_OVERLOAD(A, OverrideTest, A_value); } A &A_ref() override { PYBIND11_OVERLOAD(A &, OverrideTest, A_ref); } };
py::class_<OverrideTest::A>(m, "OverrideTest_A") .def_readwrite("value", &OverrideTest::A::value); py::class_<OverrideTest, PyOverrideTest>(m, "OverrideTest") .def(py::init<const std::string &>()) .def("str_value", &OverrideTest::str_value) // .def("str_ref", &OverrideTest::str_ref)
.def("A_value", &OverrideTest::A_value) .def("A_ref", &OverrideTest::A_ref); }
|