|
|
from __future__ import annotations
import math
import gymnasium as gym import numpy as np import pytest
from minigrid.core.actions import Actions from minigrid.core.constants import OBJECT_TO_IDX from minigrid.envs import EmptyEnv from minigrid.wrappers import ( ActionBonus, DictObservationSpaceWrapper, DirectionObsWrapper, FlatObsWrapper, FullyObsWrapper, ImgObsWrapper, NoDeath, OneHotPartialObsWrapper, PositionBonus, ReseedWrapper, RGBImgObsWrapper, RGBImgPartialObsWrapper, StochasticActionWrapper, SymbolicObsWrapper, ViewSizeWrapper, ) from tests.utils import all_testing_env_specs, assert_equals, minigrid_testing_env_specs
SEEDS = [100, 243, 500] NUM_STEPS = 100
@pytest.mark.parametrize( "env_spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs] ) def test_reseed_wrapper(env_spec): """
Test the ReseedWrapper with a list of SEEDS. """
unwrapped_env = env_spec.make() env = env_spec.make() env = ReseedWrapper(env, seeds=SEEDS) env.action_space.seed(0)
for seed in SEEDS: env.reset() unwrapped_env.reset(seed=seed) for time_step in range(NUM_STEPS): action = env.action_space.sample()
obs, rew, terminated, truncated, info = env.step(action) ( unwrapped_obs, unwrapped_rew, unwrapped_terminated, unwrapped_truncated, unwrapped_info, ) = unwrapped_env.step(action)
assert_equals(obs, unwrapped_obs, f"[{time_step}] ") assert unwrapped_env.observation_space.contains(obs)
assert ( rew == unwrapped_rew ), f"[{time_step}] reward={rew}, unwrapped reward={unwrapped_rew}" assert ( terminated == unwrapped_terminated ), f"[{time_step}] terminated={terminated}, unwrapped terminated={unwrapped_terminated}" assert ( truncated == unwrapped_truncated ), f"[{time_step}] truncated={truncated}, unwrapped truncated={unwrapped_truncated}" assert_equals(info, unwrapped_info, f"[{time_step}] ")
# Start the next seed if terminated or truncated: break
env.close() unwrapped_env.close()
@pytest.mark.parametrize("env_id", ["MiniGrid-Empty-16x16-v0"]) def test_position_bonus_wrapper(env_id): env = gym.make(env_id) wrapped_env = PositionBonus(gym.make(env_id))
action_forward = Actions.forward action_left = Actions.left action_right = Actions.right
for _ in range(10): wrapped_env.reset() for _ in range(5): wrapped_env.step(action_forward)
# Turn lef 3 times (check that actions don't influence bonus) for _ in range(3): _, wrapped_rew, _, _, _ = wrapped_env.step(action_left)
env.reset() for _ in range(5): env.step(action_forward) # Turn right 3 times for _ in range(3): _, rew, _, _, _ = env.step(action_right)
expected_bonus_reward = rew + 1 / math.sqrt(13)
assert expected_bonus_reward == wrapped_rew
@pytest.mark.parametrize("env_id", ["MiniGrid-Empty-16x16-v0"]) def test_action_bonus_wrapper(env_id): env = gym.make(env_id) wrapped_env = ActionBonus(gym.make(env_id))
action = Actions.forward
for _ in range(10): wrapped_env.reset() for _ in range(5): _, wrapped_rew, _, _, _ = wrapped_env.step(action)
env.reset() for _ in range(5): _, rew, _, _, _ = env.step(action)
expected_bonus_reward = rew + 1 / math.sqrt(10)
assert expected_bonus_reward == wrapped_rew
@pytest.mark.parametrize( "env_spec", minigrid_testing_env_specs, ids=[spec.id for spec in minigrid_testing_env_specs], ) # DictObservationSpaceWrapper is not compatible with BabyAI levels. See minigrid/wrappers.py for more details. def test_dict_observation_space_wrapper(env_spec): env = env_spec.make() env = DictObservationSpaceWrapper(env) env.reset() mission = env.mission obs, _, _, _, _ = env.step(0) assert env.string_to_indices(mission) == [ value for value in obs["mission"] if value != 0 ] env.close()
@pytest.mark.parametrize( "wrapper", [ ReseedWrapper, ImgObsWrapper, FlatObsWrapper, ViewSizeWrapper, DictObservationSpaceWrapper, OneHotPartialObsWrapper, RGBImgPartialObsWrapper, FullyObsWrapper, ], ) @pytest.mark.parametrize( "env_spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs] ) def test_main_wrappers(wrapper, env_spec): if ( wrapper in (DictObservationSpaceWrapper, FlatObsWrapper) and env_spec not in minigrid_testing_env_specs ): # DictObservationSpaceWrapper and FlatObsWrapper are not compatible with BabyAI levels # See minigrid/wrappers.py for more details pytest.skip() env = env_spec.make() env = wrapper(env) for _ in range(10): env.reset() env.step(0) env.close()
@pytest.mark.parametrize( "wrapper", [ OneHotPartialObsWrapper, RGBImgPartialObsWrapper, FullyObsWrapper, ], ) @pytest.mark.parametrize( "env_spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs] ) def test_observation_space_wrappers(wrapper, env_spec): env = wrapper(env_spec.make(disable_env_checker=True)) obs_space, wrapper_name = env.observation_space, wrapper.__name__ assert isinstance( obs_space, gym.spaces.Dict ), f"Observation space for {wrapper_name} is not a Dict: {obs_space}." # This should not fail either ImgObsWrapper(env) env.reset() env.step(0) env.close()
class EmptyEnvWithExtraObs(EmptyEnv): """
Custom environment with an extra observation """
def __init__(self) -> None: super().__init__(size=5) self.observation_space["size"] = gym.spaces.Box( low=0, high=np.iinfo(np.uint).max, shape=(2,), dtype=np.uint )
def reset(self, **kwargs): obs, info = super().reset(**kwargs) obs["size"] = np.array([self.width, self.height]) return obs, info
def step(self, action): obs, reward, terminated, truncated, info = super().step(action) obs["size"] = np.array([self.width, self.height]) return obs, reward, terminated, truncated, info
@pytest.mark.parametrize( "wrapper", [ OneHotPartialObsWrapper, RGBImgObsWrapper, RGBImgPartialObsWrapper, FullyObsWrapper, ], ) def test_agent_sees_method(wrapper): env1 = wrapper(EmptyEnvWithExtraObs()) env2 = wrapper(gym.make("MiniGrid-Empty-5x5-v0"))
obs1, _ = env1.reset(seed=0) obs2, _ = env2.reset(seed=0) assert "size" in obs1 assert obs1["size"].shape == (2,) assert (obs1["size"] == [5, 5]).all() for key in obs2: assert np.array_equal(obs1[key], obs2[key])
obs1, reward1, terminated1, truncated1, _ = env1.step(0) obs2, reward2, terminated2, truncated2, _ = env2.step(0) assert "size" in obs1 assert obs1["size"].shape == (2,) assert (obs1["size"] == [5, 5]).all() for key in obs2: assert np.array_equal(obs1[key], obs2[key])
@pytest.mark.parametrize("view_size", [5, 7, 9]) def test_viewsize_wrapper(view_size): env = gym.make("MiniGrid-Empty-5x5-v0") env = ViewSizeWrapper(env, agent_view_size=view_size) env.reset() obs, _, _, _, _ = env.step(0) assert obs["image"].shape == (view_size, view_size, 3) env.close()
@pytest.mark.parametrize("env_id", ["MiniGrid-LavaCrossingS11N5-v0"]) @pytest.mark.parametrize("type", ["slope", "angle"]) def test_direction_obs_wrapper(env_id, type): env = gym.make(env_id) env = DirectionObsWrapper(env, type=type) obs, _ = env.reset()
slope = np.divide( env.goal_position[1] - env.agent_pos[1], env.goal_position[0] - env.agent_pos[0], ) if type == "slope": assert obs["goal_direction"] == slope elif type == "angle": assert obs["goal_direction"] == np.arctan(slope)
obs, _, _, _, _ = env.step(0) slope = np.divide( env.goal_position[1] - env.agent_pos[1], env.goal_position[0] - env.agent_pos[0], ) if type == "slope": assert obs["goal_direction"] == slope elif type == "angle": assert obs["goal_direction"] == np.arctan(slope)
env.close()
@pytest.mark.parametrize("env_id", ["MiniGrid-DistShift1-v0"]) def test_symbolic_obs_wrapper(env_id): env = gym.make(env_id)
env = SymbolicObsWrapper(env) obs, _ = env.reset(seed=123) agent_pos = env.agent_pos goal_pos = env.goal_pos
assert obs["image"].shape == (env.width, env.height, 3) assert np.alltrue( obs["image"][agent_pos[0], agent_pos[1], :] == np.array([agent_pos[0], agent_pos[1], OBJECT_TO_IDX["agent"]]) ) assert np.alltrue( obs["image"][goal_pos[0], goal_pos[1], :] == np.array([goal_pos[0], goal_pos[1], OBJECT_TO_IDX["goal"]]) )
obs, _, _, _, _ = env.step(2) agent_pos = env.agent_pos goal_pos = env.goal_pos
assert obs["image"].shape == (env.width, env.height, 3) assert np.alltrue( obs["image"][agent_pos[0], agent_pos[1], :] == np.array([agent_pos[0], agent_pos[1], OBJECT_TO_IDX["agent"]]) ) assert np.alltrue( obs["image"][goal_pos[0], goal_pos[1], :] == np.array([goal_pos[0], goal_pos[1], OBJECT_TO_IDX["goal"]]) ) env.close()
@pytest.mark.parametrize("env_id", ["MiniGrid-Empty-16x16-v0"]) def test_stochastic_action_wrapper(env_id): env = gym.make(env_id) env = StochasticActionWrapper(env, prob=0.2) _, _ = env.reset() for _ in range(20): _, _, _, _, _ = env.step(0) env.close()
env = gym.make(env_id) env = StochasticActionWrapper(env, prob=0.2, random_action=1) _, _ = env.reset() for _ in range(20): _, _, _, _, _ = env.step(0) env.close()
def test_dict_observation_space_doesnt_clash_with_one_hot(): env = gym.make("MiniGrid-Empty-5x5-v0") env = OneHotPartialObsWrapper(env) env = DictObservationSpaceWrapper(env) env.reset() obs, _, _, _, _ = env.step(0) assert obs["image"].shape == (7, 7, 20) assert env.observation_space["image"].shape == (7, 7, 20) env.close()
def test_no_death_wrapper(): death_cost = -1
env = gym.make("MiniGrid-LavaCrossingS9N1-v0") _, _ = env.reset(seed=2) _, _, _, _, _ = env.step(1) _, reward, term, *_ = env.step(2)
env_wrap = NoDeath(env, ("lava",), death_cost) _, _ = env_wrap.reset(seed=2) _, _, _, _, _ = env_wrap.step(1) _, reward_wrap, term_wrap, *_ = env_wrap.step(2)
assert term and not term_wrap assert reward_wrap == reward + death_cost env.close() env_wrap.close()
env = gym.make("MiniGrid-Dynamic-Obstacles-5x5-v0") _, _ = env.reset(seed=2) _, reward, term, *_ = env.step(2)
env = NoDeath(env, ("ball",), death_cost) _, _ = env.reset(seed=2) _, reward_wrap, term_wrap, *_ = env.step(2)
assert term and not term_wrap assert reward_wrap == reward + death_cost env.close() env_wrap.close()
|