|
|
from __future__ import annotations
import math
import numpy as np
def downsample(img, factor): """
Downsample an image along both dimensions by some factor """
assert img.shape[0] % factor == 0 assert img.shape[1] % factor == 0
img = img.reshape( [img.shape[0] // factor, factor, img.shape[1] // factor, factor, 3] ) img = img.mean(axis=3) img = img.mean(axis=1)
return img
def fill_coords(img, fn, color): """
Fill pixels of an image with coordinates matching a filter function """
for y in range(img.shape[0]): for x in range(img.shape[1]): yf = (y + 0.5) / img.shape[0] xf = (x + 0.5) / img.shape[1] if fn(xf, yf): img[y, x] = color
return img
def rotate_fn(fin, cx, cy, theta): def fout(x, y): x = x - cx y = y - cy
x2 = cx + x * math.cos(-theta) - y * math.sin(-theta) y2 = cy + y * math.cos(-theta) + x * math.sin(-theta)
return fin(x2, y2)
return fout
def point_in_line(x0, y0, x1, y1, r): p0 = np.array([x0, y0], dtype=np.float32) p1 = np.array([x1, y1], dtype=np.float32) dir = p1 - p0 dist = np.linalg.norm(dir) dir = dir / dist
xmin = min(x0, x1) - r xmax = max(x0, x1) + r ymin = min(y0, y1) - r ymax = max(y0, y1) + r
def fn(x, y): # Fast, early escape test if x < xmin or x > xmax or y < ymin or y > ymax: return False
q = np.array([x, y]) pq = q - p0
# Closest point on line a = np.dot(pq, dir) a = np.clip(a, 0, dist) p = p0 + a * dir
dist_to_line = np.linalg.norm(q - p) return dist_to_line <= r
return fn
def point_in_circle(cx, cy, r): def fn(x, y): return (x - cx) * (x - cx) + (y - cy) * (y - cy) <= r * r
return fn
def point_in_rect(xmin, xmax, ymin, ymax): def fn(x, y): return x >= xmin and x <= xmax and y >= ymin and y <= ymax
return fn
def point_in_triangle(a, b, c): a = np.array(a, dtype=np.float32) b = np.array(b, dtype=np.float32) c = np.array(c, dtype=np.float32)
def fn(x, y): v0 = c - a v1 = b - a v2 = np.array((x, y)) - a
# Compute dot products dot00 = np.dot(v0, v0) dot01 = np.dot(v0, v1) dot02 = np.dot(v0, v2) dot11 = np.dot(v1, v1) dot12 = np.dot(v1, v2)
# Compute barycentric coordinates inv_denom = 1 / (dot00 * dot11 - dot01 * dot01) u = (dot11 * dot02 - dot01 * dot12) * inv_denom v = (dot00 * dot12 - dot01 * dot02) * inv_denom
# Check if point is in triangle return (u >= 0) and (v >= 0) and (u + v) < 1
return fn
def highlight_img(img, color=(255, 255, 255), alpha=0.30): """
Add highlighting to an image """
blend_img = img + alpha * (np.array(color, dtype=np.uint8) - img) blend_img = blend_img.clip(0, 255).astype(np.uint8) img[:, :, :] = blend_img
|