|
|
from __future__ import annotations
import hashlib import math from abc import abstractmethod from typing import Any, Iterable, SupportsFloat, TypeVar
import numpy
import gymnasium as gym import numpy as np import pygame import pygame.freetype from gymnasium import spaces from gymnasium.core import ActType, ObsType
from minigrid.core.actions import Actions from minigrid.core.constants import COLOR_NAMES, DIR_TO_VEC, TILE_PIXELS, OBJECT_TO_STR from minigrid.core.grid import Grid from minigrid.core.mission import MissionSpace from minigrid.core.world_object import Point, WorldObj, Slippery, SlipperyEast, SlipperyNorth, SlipperySouth, SlipperyWest, Lava, SlipperyNorthWest, SlipperyNorthEast, SlipperySouthWest, SlipperySouthEast from minigrid.core.adversary import Adversary from minigrid.core.tasks import DoRandom, Task, List from minigrid.core.state import State
from collections import deque
T = TypeVar("T")
stay_at_pos_distribution = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]
def is_slippery(cell : WorldObj): return isinstance(cell, (SlipperySouth, Slippery, SlipperyEast, SlipperyWest, SlipperyNorth, SlipperyNorthWest, SlipperySouthEast, SlipperyNorthEast, SlipperySouthWest))
class MiniGridEnv(gym.Env): """
2D grid world game environment """
metadata = { "render_modes": ["human", "rgb_array"], "render_fps": 10, }
def __init__( self, mission_space: MissionSpace, grid_size: int | None = None, width: int | None = None, height: int | None = None, max_steps: int = 100, see_through_walls: bool = False, agent_view_size: int = 7, render_mode: str | None = None, screen_size: int | None = 640, highlight: bool = False, tile_size: int = TILE_PIXELS, agent_pov: bool = False, **kwargs ): # Initialize mission self.mission = mission_space.sample() # Can't set both grid_size and width/height if grid_size: assert width is None and height is None width = grid_size height = grid_size assert width is not None and height is not None
# Action enumeration for this environment self.actions = Actions
# Actions are discrete integer values self.action_space = spaces.Discrete(len(self.actions))
# Number of cells (width and height) in the agent view assert agent_view_size % 2 == 1 assert agent_view_size >= 3 self.agent_view_size = agent_view_size
# Observations are dictionaries containing an # encoding of the grid and a textual 'mission' string image_observation_space = spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, 3), dtype="uint8", ) self.observation_space = spaces.Dict( { "image": image_observation_space, "direction": spaces.Discrete(4), "mission": mission_space, } )
# Range of possible rewards self.reward_range = (0, 1)
self.screen_size = screen_size self.render_size = None self.window = None self.clock = None
# Environment configuration self.width = width self.height = height
assert isinstance( max_steps, int ), f"The argument max_steps must be an integer, got: {type(max_steps)}" self.max_steps = max_steps
self.see_through_walls = see_through_walls
# Current position and direction of the agent self.agent_pos: np.ndarray | tuple[int, int] = None self.agent_dir: int = None
# Current grid and mission and carrying self.grid = Grid(width, height) self.carrying = None self.objects = list() self.doors = list()
# dict of adversaries self.adversaries = dict()
# Rendering attributes self.render_mode = render_mode self.highlight = highlight self.tile_size = tile_size self.agent_pov = agent_pov
# Custom self.background_tiles = dict()
def reset( self, *, seed: int | None = None, options: dict[str, Any] | None = None, ) -> tuple[ObsType, dict[str, Any]]: super().reset(seed=seed)
# Reinitialize episode-specific variables self.agent_pos = (-1, -1) self.agent_dir = -1 self.goal_pos = (-1, -1) # Generate a new random grid at the start of each episode
self.objects.clear() self.doors.clear() self._gen_grid(self.width, self.height)
# These fields should be defined by _gen_grid assert ( self.agent_pos >= (0, 0) if isinstance(self.agent_pos, tuple) else all(self.agent_pos >= 0) and self.agent_dir >= 0 )
# Check that the agent doesn't overlap with an object start_cell = self.grid.get(*self.agent_pos) assert start_cell is None or start_cell.can_overlap()
# Item picked up, being carried, initially nothing self.carrying = None
# Step count since episode start self.step_count = 0
if self.render_mode == "human": self.render()
# Return first observation obs = self.gen_obs()
return obs, {}
def hash(self, size=16): """Compute a hash that uniquely identifies the current state of the environment.
:param size: Size of the hashing """
sample_hash = hashlib.sha256()
to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir] to_encode += [(adv.adversary_pos, adv.adversary_dir, adv.color) for adv in self.adversaries] for item in to_encode: sample_hash.update(str(item).encode("utf8"))
return sample_hash.hexdigest()[:size]
def add_adversary( self, i: int, j: int, color: str, direction: int = 0, tasks: List[Task] = [DoRandom()], repeating=False ): """
Adds an adversary to the grid """
adv = Adversary((i,j), direction, color, tasks=tasks, repeating=repeating) self.adversaries[color] = adv return adv
@property def steps_remaining(self): return self.max_steps - self.step_count
def pprint_grid(self): """
Produce a pretty string of the environment's grid along with the agent. A grid cell is represented by 2-character string, the first one for the object and the second one for the color. """
if self.agent_pos is None or self.agent_dir is None or self.grid is None: raise ValueError( "The environment hasn't been `reset` therefore the `agent_pos`, `agent_dir` or `grid` are unknown." )
# Map of object types to short string
# Map agent's direction to short string AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
output = ""
for j in range(self.grid.height): for i in range(self.grid.width): if i == self.agent_pos[0] and j == self.agent_pos[1]: output += 2 * AGENT_DIR_TO_STR[self.agent_dir] continue
tile = self.grid.get(i, j)
if tile is None: output += " " continue
if tile.type == "door": if tile.is_open: output += "__" elif tile.is_locked: output += "L" + tile.color[0].upper() else: output += "D" + tile.color[0].upper() continue
output += OBJECT_TO_STR[tile.type] + tile.color[0].upper()
if j < self.grid.height - 1: output += "\n"
return output
def printGrid(self, init=False): """
Produce a pretty string of the environment's grid along with the agent. A grid cell is represented by 2-character string, the first one for the object and the second one for the color. """
if init: self._gen_grid(self.grid.width, self.grid.height) # todo need to add this for minigrid2prism #print("Dimensions: {} x {}".format(self.grid.height, self.grid.width)) #self._gen_grid(self.grid.width, self.grid.height) # Map of object types to short string
# Map agent's direction to short string AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
str = "" background_str = "" adversaries = {adv.adversary_pos: adv for adv in self.adversaries.values()} if self.adversaries else {} bfs_rewards = []
for j in range(self.grid.height): for i in range(self.grid.width): b = self.grid.get_background(i, j) c = self.grid.get(i, j)
if (i,j) in adversaries.keys(): a = adversaries[(i,j)] str += OBJECT_TO_STR["adversary"] + a.color[0].upper() if init: background_str += " " continue
if init: if c and c.type == "wall": background_str += OBJECT_TO_STR[c.type] + c.color[0].upper() elif c and c.type in ["slipperynorth", "slipperyeast", "slipperysouth", "slipperywest", "slipperynorthwest", "slipperynortheast", "slipperysoutheast", "slipperysouthwest"]: background_str += OBJECT_TO_STR[c.type] + c.color[0].upper() elif b is None: background_str += " " else: if b.type != "floor": type_str = OBJECT_TO_STR[b.type] else: type_str = " "
background_str += type_str + b.color.replace("light","")[0].upper()
if hasattr(self, "bfs_reward") and self.bfs_reward: bfs_rewards.append(f"{i};{j};{self.bfs_reward[i + self.grid.width * j]}")
if self.agent_pos is not None and i == self.agent_pos[0] and j == self.agent_pos[1]:
if init: str += "XR" else: str += 2 * AGENT_DIR_TO_STR[self.agent_dir] continue
if c is None: str += " " continue
if c.type == "door": if c.is_open: str += "__" elif c.is_locked: str += "L" + c.color[0].upper() else: str += "D" + c.color[0].upper() continue
str += OBJECT_TO_STR[c.type] + c.color[0].upper()
if j < self.grid.height - 1: str += "\n" if init: background_str += "\n"
seperator = "-" * self.grid.width * 2
if init and hasattr(self, "bfs_reward") and self.bfs_reward: return str + "\n" + seperator + "\n" + background_str + "\n" + seperator + "\n" + ";".join(bfs_rewards) + "\n" + seperator + "\n" else: return str + "\n" + seperator + "\n" + background_str + "\n" + seperator + "\n" + seperator + "\n"
def export_grid(self, filename="grid.txt"): with open(filename, "w") as gridFile: gridFile.write(self.printGrid(init=True))
@abstractmethod def _gen_grid(self, width, height): pass
def _reward(self) -> float: """
Compute the reward to be given upon success """
return 1 - 0.9 * (self.step_count / self.max_steps)
def _rand_int(self, low: int, high: int) -> int: """
Generate random integer in [low,high[ """
return self.np_random.integers(low, high)
def _rand_float(self, low: float, high: float) -> float: """
Generate random float in [low,high[ """
return self.np_random.uniform(low, high)
def _rand_bool(self) -> bool: """
Generate random boolean value """
return self.np_random.integers(0, 2) == 0
def _rand_elem(self, iterable: Iterable[T]) -> T: """
Pick a random element in a list """
lst = list(iterable) idx = self._rand_int(0, len(lst)) return lst[idx]
def _rand_subset(self, iterable: Iterable[T], num_elems: int) -> list[T]: """
Sample a random subset of distinct elements of a list """
lst = list(iterable) assert num_elems <= len(lst)
out: list[T] = []
while len(out) < num_elems: elem = self._rand_elem(lst) lst.remove(elem) out.append(elem)
return out
def _rand_color(self) -> str: """
Generate a random color name (string) """
return self._rand_elem(COLOR_NAMES)
def _rand_pos( self, x_low: int, x_high: int, y_low: int, y_high: int ) -> tuple[int, int]: """
Generate a random (x,y) position tuple """
return ( self.np_random.integers(x_low, x_high), self.np_random.integers(y_low, y_high), )
def place_obj( self, obj: WorldObj | None, top: Point = None, size: tuple[int, int] = None, reject_fn=None, max_tries=math.inf, ): """
Place an object at an empty position in the grid
:param top: top-left position of the rectangle where to place :param size: size of the rectangle where to place :param reject_fn: function to filter out potential positions """
if top is None: top = (0, 0) else: top = (max(top[0], 0), max(top[1], 0))
if size is None: size = (self.grid.width, self.grid.height)
num_tries = 0
while True: # This is to handle with rare cases where rejection sampling # gets stuck in an infinite loop if num_tries > max_tries: raise RecursionError("rejection sampling failed in place_obj")
num_tries += 1
pos = ( self._rand_int(top[0], min(top[0] + size[0], self.grid.width)), self._rand_int(top[1], min(top[1] + size[1], self.grid.height)), )
# Don't place the object on top of another object if self.grid.get(*pos) is not None: continue
# Don't place the object where the agent is if np.array_equal(pos, self.agent_pos): continue
# Check if there is a filtering criterion if reject_fn and reject_fn(self, pos): continue
break
self.grid.set(pos[0], pos[1], obj)
if obj is not None: obj.init_pos = pos obj.cur_pos = pos
return pos
def put_obj(self, obj: WorldObj, i: int, j: int): """
Put an object at a specific position in the grid """
self.grid.set(i, j, obj) obj.init_pos = (i, j) obj.cur_pos = (i, j) if obj.can_pickup(): self.objects.append(obj) self.objects = sorted(self.objects, key=lambda object: object.color) if obj.type == "door": self.doors.append(obj) self.doors = sorted(self.doors, key=lambda object: object.color)
def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf): """
Set the agent's starting point at an empty position in the grid """
self.agent_pos = (-1, -1) pos = self.place_obj(None, top, size, max_tries=max_tries) self.agent_pos = pos
if rand_dir: self.agent_dir = self._rand_int(0, 4)
return pos
def disable_random_start(self): pass
def add_slippery_tile(self, i: int, j: int, type: str): """
Adds a slippery tile to the grid """
if type=="slipperynorth": slippery_tile = SlipperyNorth() elif type=="slipperysouth": slippery_tile = SlipperySouth() elif type=="slipperyeast": slippery_tile = SlipperyEast() elif type=="slipperywest": slippery_tile = SlipperyWest() else: slippery_tile = SlipperyNorth()
self.grid.set(i, j, slippery_tile) return (i, j)
@property def dir_vec(self): """
Get the direction vector for the agent, pointing in the direction of forward movement. """
assert ( self.agent_dir >= 0 and self.agent_dir < 4 ), f"Invalid agent_dir: {self.agent_dir} is not within range(0, 4)" return DIR_TO_VEC[self.agent_dir]
@property def right_vec(self): """
Get the vector pointing to the right of the agent. """
dx, dy = self.dir_vec return np.array((-dy, dx))
@property def front_pos(self): """
Get the position of the cell that is right in front of the agent """
return self.agent_pos + self.dir_vec
def get_view_coords(self, i, j): """
Translate and rotate absolute grid coordinates (i, j) into the agent's partially observable view (sub-grid). Note that the resulting coordinates may be negative or outside of the agent's view size. """
ax, ay = self.agent_pos dx, dy = self.dir_vec rx, ry = self.right_vec
# Compute the absolute coordinates of the top-left view corner sz = self.agent_view_size hs = self.agent_view_size // 2 tx = ax + (dx * (sz - 1)) - (rx * hs) ty = ay + (dy * (sz - 1)) - (ry * hs)
lx = i - tx ly = j - ty
# Project the coordinates of the object relative to the top-left # corner onto the agent's own coordinate system vx = rx * lx + ry * ly vy = -(dx * lx + dy * ly)
return vx, vy
def get_view_exts(self, agent_view_size=None): """
Get the extents of the square set of tiles visible to the agent Note: the bottom extent indices are not included in the set if agent_view_size is None, use self.agent_view_size """
agent_view_size = agent_view_size or self.agent_view_size
# Facing right if self.agent_dir == 0: topX = self.agent_pos[0] topY = self.agent_pos[1] - agent_view_size // 2 # Facing down elif self.agent_dir == 1: topX = self.agent_pos[0] - agent_view_size // 2 topY = self.agent_pos[1] # Facing left elif self.agent_dir == 2: topX = self.agent_pos[0] - agent_view_size + 1 topY = self.agent_pos[1] - agent_view_size // 2 # Facing up elif self.agent_dir == 3: topX = self.agent_pos[0] - agent_view_size // 2 topY = self.agent_pos[1] - agent_view_size + 1 else: assert False, "invalid agent direction"
botX = topX + agent_view_size botY = topY + agent_view_size
return topX, topY, botX, botY
def relative_coords(self, x, y): """
Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates """
vx, vy = self.get_view_coords(x, y)
if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size: return None
return vx, vy
def get_neighbours(self, i, j): neighbours = list() potential_neighbours = [(i-1,j), (i,j+1), (i+1,j), (i,j-1)] for n in potential_neighbours: cell = self.grid.get(*n) if cell is None or (cell.can_overlap()): #and not isinstance(cell, Lava)): neighbours.append(n)
return neighbours
def run_BFS_reward(grid): if not hasattr(grid, "goal_pos") or np.all(grid.goal_pos == (-1, -1)): return []
starting_position = (grid.goal_pos[0], grid.goal_pos[1]) max_distance = 0 distances = [None] * grid.width * grid.height bfs_queue = deque([starting_position]) traversed_cells = set()
distances[starting_position[0] + grid.width * starting_position[1]] = 0 while bfs_queue: current_cell = bfs_queue.pop() if current_cell in traversed_cells: continue traversed_cells.add(current_cell) current_distance = distances[current_cell[0] + grid.width * current_cell[1]] if current_distance > max_distance: max_distance = current_distance for neighbour in grid.get_neighbours(*current_cell): if neighbour in traversed_cells: continue bfs_queue.appendleft(neighbour) if distances[neighbour[0] + grid.width * neighbour[1]] is None: distances[neighbour[0] + grid.width * neighbour[1]] = current_distance + 1
distances = [x if x else 0 for x in distances] # return [ (-x/1) for x in distances] return [ (1/4)* (-x/max_distance) if x != 0 else 0 for x in distances]
def print_bfs_reward(self): rep = "" for j in range(self.grid.height): for i in range(self.grid.width): rep += F"{self.bfs_reward[j * self.grid.height + i]:5.2f} "
rep += '\n'
print(rep)
def in_view(self, x, y): """
check if a grid position is visible to the agent """
return self.relative_coords(x, y) is not None
def agent_sees(self, x, y): """
Check if a non-empty grid position is visible to the agent """
coordinates = self.relative_coords(x, y) if coordinates is None: return False vx, vy = coordinates
obs = self.gen_obs()
obs_grid, _ = Grid.decode(obs["image"]) obs_cell = obs_grid.get(vx, vy) world_cell = self.grid.get(x, y)
assert world_cell is not None
return obs_cell is not None and obs_cell.type == world_cell.type
def step( self, action: ActType ) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]: self.step_count += 1 reward = 0 terminated = False truncated = False info = dict() need_position_update = False
# Get the position in front of the agent fwd_pos = self.front_pos
# Get the contents of the cell in front of the agent fwd_cell = self.grid.get(*fwd_pos) current_cell = self.grid.get(*self.agent_pos)
opened_door = False picked_up = False if action == self.actions.forward and is_slippery(current_cell): probabilities = current_cell.get_probabilities(self.agent_dir) possible_fwd_pos, prob = self.get_neighbours_prob(self.agent_pos, probabilities) fwd_pos_index = np.random.choice(len(possible_fwd_pos), 1, p=prob) fwd_pos = possible_fwd_pos[fwd_pos_index[0]] fwd_cell = self.grid.get(*fwd_pos) need_position_update = True # Rotate left elif action == self.actions.left: if is_slippery(current_cell): possible_fwd_pos, prob = self.get_neighbours_prob(self.agent_pos, current_cell.probabilities_turn) fwd_pos_index = np.random.choice(len(possible_fwd_pos), 1, p=prob) fwd_pos = possible_fwd_pos[fwd_pos_index[0]] fwd_cell = self.grid.get(*fwd_pos)
if fwd_pos == (self.agent_pos[0], self.agent_pos[1]): self.agent_dir -= 1 if self.agent_dir < 0: self.agent_dir += 4 else: need_position_update = True else: self.agent_dir -= 1 if self.agent_dir < 0: self.agent_dir += 4
# Rotate right elif action == self.actions.right: if is_slippery(current_cell): possible_fwd_pos, prob = self.get_neighbours_prob(self.agent_pos, current_cell.probabilities_turn) fwd_pos_index = np.random.choice(len(possible_fwd_pos), 1, p=prob) fwd_pos = possible_fwd_pos[fwd_pos_index[0]] fwd_cell = self.grid.get(*fwd_pos)
if fwd_pos == (self.agent_pos[0], self.agent_pos[1]): self.agent_dir = (self.agent_dir + 1) % 4 else: need_position_update = True else: self.agent_dir = (self.agent_dir + 1) % 4
# Move forward elif action == self.actions.forward: if fwd_cell is None or fwd_cell.can_overlap(): self.agent_pos = tuple(fwd_pos) fwd_cell = self.grid.get(*fwd_pos) need_position_update = True
# Pick up an object elif action == self.actions.pickup: if fwd_cell and fwd_cell.can_pickup(): if self.carrying is None: self.carrying = fwd_cell self.carrying.cur_pos = np.array([-1, -1]) self.grid.set(fwd_pos[0], fwd_pos[1], None) picked_up = True
# Drop an object elif action == self.actions.drop: if not fwd_cell and self.carrying: self.grid.set(fwd_pos[0], fwd_pos[1], self.carrying) self.carrying.cur_pos = fwd_pos self.carrying = None
# Toggle/activate an object elif action == self.actions.toggle: if fwd_cell: fwd_cell.toggle(self, fwd_pos) if fwd_cell.type == "door" and fwd_cell.is_open: opened_door = True
# Done action (not used by default) elif action == self.actions.done: pass
else: raise ValueError(f"Unknown action: {action}")
if need_position_update and (fwd_cell is None or fwd_cell.can_overlap()): self.agent_pos = tuple(fwd_pos)
current_cell = self.grid.get(*self.agent_pos)
collision = False if self.adversaries: for adversary in self.adversaries.values(): if np.array_equal(self.agent_pos, adversary.adversary_pos): collision = True
reached_goal = False ran_into_lava = False if current_cell is not None and current_cell.type == "goal": terminated = True reached_goal = True try: reward = self.goal_reward except: reward = 1 elif current_cell is not None and current_cell.type == "lava": terminated = True ran_into_lava = True try: reward = self.failure_penalty except: reward = -1 elif collision: terminated = True try: reward = self.collision_penalty except: reward = -1 self.agent_pos = tuple(fwd_pos) else: try: reward += self.bfs_reward[self.agent_pos[0] + self.grid.width * self.agent_pos[1]] except: pass
if self.step_count >= self.max_steps: truncated = True
if self.render_mode == "human": self.render()
info["reached_goal"] = reached_goal info["ran_into_lava"] = ran_into_lava info["opened_door"] = opened_door info["picked_up"] = picked_up #if terminated: # print(f"Terminated at: {self.agent_pos} {self.grid.get(*self.agent_pos)} {info}") if len(self.adversaries) > 0: info["collision"] = collision obs = self.gen_obs() return obs, reward, terminated, truncated, info
def get_neighbours_prob(self, agent_pos, probabilities): neighbours = [tuple((x,y)) for x in range(agent_pos[0]-1, agent_pos[0]+2) for y in range(agent_pos[1]-1,agent_pos[1]+2)] probabilities_dict = dict(zip(neighbours, probabilities))
for pos in probabilities_dict: cell = self.grid.get(*pos) if cell is not None and not cell.can_overlap(): probabilities_dict[pos] = 0.0 try: return list(probabilities_dict.keys()), [float(p) / sum(probabilities_dict.values()) for p in probabilities_dict.values()] except ZeroDivisionError as e: return list(probabilities_dict.keys()), stay_at_pos_distribution
def gen_obs_grid(self, agent_view_size=None): """
Generate the sub-grid observed by the agent. This method also outputs a visibility mask telling us which grid cells the agent can actually see. if agent_view_size is None, self.agent_view_size is used """
topX, topY, botX, botY = self.get_view_exts(agent_view_size)
agent_view_size = agent_view_size or self.agent_view_size
grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size)
for i in range(self.agent_dir + 1): grid = grid.rotate_left()
# Process occluders and visibility # Note that this incurs some performance cost if not self.see_through_walls: vis_mask = grid.process_vis( agent_pos=(agent_view_size // 2, agent_view_size - 1) ) else: vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool)
# Make it so the agent sees what it's carrying # We do this by placing the carried object at the agent's position # in the agent's partially observable view agent_pos = grid.width // 2, grid.height - 1 if self.carrying: grid.set(*agent_pos, self.carrying) else: grid.set(*agent_pos, None)
return grid, vis_mask
def gen_obs(self): """
Generate the agent's view (partially observable, low-resolution encoding) """
grid, vis_mask = self.gen_obs_grid()
# Encode the partially observable view into a numpy array image = grid.encode(vis_mask)
# Observations are dictionaries containing: # - an image (partially observable view of the environment) # - the agent's direction/orientation (acting as a compass) # - a textual mission string (instructions for the agent) obs = {"image": image, "direction": self.agent_dir, "mission": self.mission}
return obs
def get_pov_render(self, tile_size): """
Render an agent's POV observation for visualization """
grid, vis_mask = self.gen_obs_grid()
# Render the whole grid img = grid.render( tile_size, agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1), agent_dir=3, adversaries=self.adversaries.values(), highlight_mask=vis_mask, )
return img
def get_full_render(self, highlight, tile_size): """
Render a non-paratial observation for visualization """
# Compute which cells are visible to the agent _, vis_mask = self.gen_obs_grid()
# Compute the world coordinates of the bottom-left corner # of the agent's view area f_vec = self.dir_vec r_vec = self.right_vec top_left = ( self.agent_pos + f_vec * (self.agent_view_size - 1) - r_vec * (self.agent_view_size // 2) )
# Mask of which cells to highlight highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
# For each cell in the visibility mask for vis_j in range(0, self.agent_view_size): for vis_i in range(0, self.agent_view_size): # If this cell is not visible, don't highlight it if not vis_mask[vis_i, vis_j]: continue
# Compute the world coordinates of this cell abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
if abs_i < 0 or abs_i >= self.width: continue if abs_j < 0 or abs_j >= self.height: continue
# Mark this cell to be highlighted highlight_mask[abs_i, abs_j] = True
# Render the whole grid img = self.grid.render( tile_size, self.agent_pos, self.agent_dir, adversaries=self.adversaries.values() if self.adversaries else [], highlight_mask=highlight_mask if highlight else None, )
return img
def get_frame( self, highlight: bool = True, tile_size: int = TILE_PIXELS, agent_pov: bool = False, ): """Returns an RGB image corresponding to the whole environment or the agent's point of view.
Args:
highlight (bool): If true, the agent's field of view or point of view is highlighted with a lighter gray color. tile_size (int): How many pixels will form a tile from the NxM grid. agent_pov (bool): If true, the rendered frame will only contain the point of view of the agent.
Returns:
frame (np.ndarray): A frame of type numpy.ndarray with shape (x, y, 3) representing RGB values for the x-by-y pixel image.
"""
if agent_pov: return self.get_pov_render(tile_size) else: return self.get_full_render(highlight, tile_size)
def render(self): img = self.get_frame(self.highlight, self.tile_size, self.agent_pov)
screen_width = 2 * self.tile_size * self.grid.width screen_height = 2 * self.tile_size * self.grid.height if self.render_mode == "human": img = np.transpose(img, axes=(1, 0, 2)) if self.render_size is None: self.render_size = img.shape[:2] if self.window is None: pygame.init() pygame.display.init() self.window = pygame.display.set_mode( (screen_width, screen_height) ) pygame.display.set_caption("minigrid") if self.clock is None: self.clock = pygame.time.Clock() surf = pygame.surfarray.make_surface(img)
# Create background with mission description offset = surf.get_size()[0] * 0.1 offset = 0 # offset = 32 if self.agent_pov else 64 bg = pygame.Surface( (int(surf.get_size()[0] + offset), int(surf.get_size()[1] + offset)) ) bg.convert() bg.fill((255, 255, 255)) bg.blit(surf, (offset / 2, 0))
bg = pygame.transform.smoothscale(bg, (screen_width, screen_height))
#font_size = 22 #text = self.mission #font = pygame.freetype.SysFont(pygame.font.get_default_font(), font_size) #text_rect = font.get_rect(text, size=font_size) #text_rect.center = bg.get_rect().center #text_rect.y = bg.get_height() - font_size * 1.5 #font.render_to(bg, text_rect, text, size=font_size)
self.window.blit(bg, (0, 0)) pygame.event.pump() self.clock.tick(self.metadata["render_fps"]) pygame.display.flip()
elif self.render_mode == "rgb_array": return img
def get_symbolic_state(self): adversaries = tuple() balls = tuple() keys = tuple() boxes = tuple() doors = tuple()
for obj in self.objects: if obj.type == "box": boxes += (obj.to_state(),) if obj.type == "ball": balls += (obj.to_state(),) if obj.type == "key": keys += (obj.to_state(),) for door in self.doors: doors += (door.to_state(),)
for color in COLOR_NAMES: try: adversaries += (self.adversaries[color].to_state(),) except Exception as e: pass
carrying = "" if not self.carrying else f"{self.carrying.color.capitalize()}{self.carrying.type.capitalize()}" state = State(colAgent=self.agent_pos[0], rowAgent=self.agent_pos[1], viewAgent=self.agent_dir, carrying=carrying, adversaries=adversaries, keys=keys, doors=doors) return state
def close(self): if self.window: pygame.quit()
|