|
|
from __future__ import annotations
from minigrid.core.constants import COLOR_NAMES from minigrid.core.grid import Grid from minigrid.core.mission import MissionSpace from minigrid.core.world_object import Ball, Box, Key from minigrid.minigrid_env import MiniGridEnv
class GoToObjectEnv(MiniGridEnv): """
## Description
This environment is a room with colored objects. The agent receives a textual (mission) string as input, telling it which colored object to go to, (eg: "go to the red key"). It receives a positive reward for performing the `done` action next to the correct object, as indicated in the mission string.
## Mission Space
"go to the {color} {obj_type}"
{color} is the color of the object. Can be "red", "green", "blue", "purple", "yellow" or "grey". {obj_type} is the type of the object. Can be "key", "ball", "box".
## Action Space
| Num | Name | Action | |-----|--------------|----------------------| | 0 | left | Turn left | | 1 | right | Turn right | | 2 | forward | Move forward | | 3 | pickup | Unused | | 4 | drop | Unused | | 5 | toggle | Unused | | 6 | done | Done completing task |
## Observation Encoding
- Each tile is encoded as a 3 dimensional tuple: `(OBJECT_IDX, COLOR_IDX, STATE)` - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in [minigrid/minigrid.py](minigrid/minigrid.py) - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
## Rewards
A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
## Termination
The episode ends if any one of the following conditions is met:
1. The agent stands next the correct door performing the `done` action. 2. Timeout (see `max_steps`).
## Registered Configurations
- `MiniGrid-GoToObject-6x6-N2-v0` - `MiniGrid-GoToObject-8x8-N2-v0`
"""
def __init__(self, size=6, numObjs=2, max_steps: int | None = None, **kwargs):
self.numObjs = numObjs self.size = size # Types of objects to be generated self.obj_types = ["key", "ball", "box"]
mission_space = MissionSpace( mission_func=self._gen_mission, ordered_placeholders=[COLOR_NAMES, self.obj_types], )
if max_steps is None: max_steps = 5 * size**2
super().__init__( mission_space=mission_space, width=size, height=size, # Set this to True for maximum speed see_through_walls=True, max_steps=max_steps, **kwargs, )
@staticmethod def _gen_mission(color: str, obj_type: str): return f"go to the {color} {obj_type}"
def _gen_grid(self, width, height): self.grid = Grid(width, height)
# Generate the surrounding walls self.grid.wall_rect(0, 0, width, height)
# Types and colors of objects we can generate types = ["key", "ball", "box"]
objs = [] objPos = []
# Until we have generated all the objects while len(objs) < self.numObjs: objType = self._rand_elem(types) objColor = self._rand_elem(COLOR_NAMES)
# If this object already exists, try again if (objType, objColor) in objs: continue
if objType == "key": obj = Key(objColor) elif objType == "ball": obj = Ball(objColor) elif objType == "box": obj = Box(objColor) else: raise ValueError( "{} object type given. Object type can only be of values key, ball and box.".format( objType ) )
pos = self.place_obj(obj) objs.append((objType, objColor)) objPos.append(pos)
# Randomize the agent start position and orientation self.place_agent()
# Choose a random object to be picked up objIdx = self._rand_int(0, len(objs)) self.targetType, self.target_color = objs[objIdx] self.target_pos = objPos[objIdx]
descStr = f"{self.target_color} {self.targetType}" self.mission = "go to the %s" % descStr # print(self.mission)
def step(self, action): obs, reward, terminated, truncated, info = super().step(action)
ax, ay = self.agent_pos tx, ty = self.target_pos
# Toggle/pickup action terminates the episode if action == self.actions.toggle: terminated = True
# Reward performing the done action next to the target object if action == self.actions.done: if (ax == tx and abs(ay - ty) == 1) or (ay == ty and abs(ax - tx) == 1): reward = self._reward() terminated = True
return obs, reward, terminated, truncated, info
|