You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
%module ModRationalFunction %{ #include <carl/core/RationalFunction.h> #include <carl/core/MultivariatePolynomial.h> #include <carl/core/FactorizedPolynomial.h>
typedef mpq_class Rational;
typedef carl::Term<Rational> Term; typedef carl::MultivariatePolynomial<Rational> Polynomial; typedef carl::FactorizedPolynomial<Polynomial> FactorizedPolynomial; typedef carl::RationalFunction<Polynomial> RationalFunction; typedef carl::RationalFunction<FactorizedPolynomial> FactorizedRationalFunction;
typedef unsigned int uint;
%}
%include "std_string.i" //TODO: for 32 bit support this has to be changed.. //%import <stddef> //for size_t maybe? typedef long unsigned int size_t; //this should be okay for 64 bits at least
%import "rational.i" %import "variable.i" %import "monomial.i" %import "term.i" %import "polynomial.i" %import "factorizedpolynomial.i"
typedef carl::Term<Rational> Term; typedef carl::MultivariatePolynomial<Rational> Polynomial; typedef carl::FactorizedPolynomial<Polynomial> FactorizedPolynomial;
typedef carl::RationalFunction<FactorizedPolynomial> FactorizedRationalFunction;
%rename(RationalFunction) carl::RationalFunction<Polynomial>; %rename(FactorizedRationalFunction) carl::RationalFunction<FactorizedPolynomial>; namespace carl {
class RationalFunction<Polynomial> { public: typedef typename Rational CoeffType; explicit RationalFunction(const Polynomial& nom, const Polynomial& denom): mPolynomialQuotient(nullptr), mNumberQuotient(), mIsSimplified(false) { }
CoeffType evaluate(const std::map<Variable, CoeffType>& substitutions) const;
inline Polynomial nominator() const;
inline Polynomial denominator() const;
%extend { std::string toString() { std::stringstream ss; ss << *$self; return ss.str(); } Polynomial numerator() const { return $self->nominator(); }
std::vector<carl::Variable> gatherVariables() const { std::set<carl::Variable> asSet = $self->gatherVariables(); return std::vector<carl::Variable>(asSet.begin(),asSet.end()); }
bool equals(const carl::RationalFunction<Polynomial>& other) { return *$self == other; } bool notEquals(const carl::RationalFunction<Polynomial>& other) { return *$self != other; }
carl::RationalFunction<Polynomial> add(const Polynomial& rhs) { return *($self)+rhs; }
carl::RationalFunction<Polynomial> add(const Term& rhs) { return *($self)+rhs; }
carl::RationalFunction<Polynomial> add(const Monomial::Arg& rhs) { return *($self)+rhs; }
carl::RationalFunction<Polynomial> add(carl::Variable::Arg rhs) { return *($self)+rhs; }
carl::RationalFunction<Polynomial> add(Rational rhs) { return *($self)+rhs; }
carl::RationalFunction<Polynomial> sub(const Polynomial& rhs) { return *($self)-rhs; }
carl::RationalFunction<Polynomial> sub(const Term& rhs) { return *($self)-rhs; }
carl::RationalFunction<Polynomial> sub(const Monomial::Arg& rhs) { return *($self)-rhs; }
carl::RationalFunction<Polynomial> sub(carl::Variable::Arg rhs) { return *($self)-rhs; }
carl::RationalFunction<Polynomial> sub(Rational rhs) { return *($self)-rhs; }
carl::RationalFunction<Polynomial> mul(const Polynomial& rhs) { return *($self)*rhs; }
carl::RationalFunction<Polynomial>mul(const Term& rhs) { return *($self)*rhs; }
carl::RationalFunction<Polynomial> mul(const Monomial::Arg& rhs) { return *($self)*rhs; }
carl::RationalFunction<Polynomial> mul(carl::Variable::Arg rhs) { return *($self)*rhs; }
carl::RationalFunction<Polynomial> mul(Rational rhs) { return *($self)*rhs; }
carl::RationalFunction<Polynomial> div(const Polynomial& rhs) { return *($self)/rhs; }
carl::RationalFunction<Polynomial> div(const Term& rhs) { return *($self)/rhs; }
carl::RationalFunction<Polynomial> div(const Monomial::Arg& rhs) { return *($self)/rhs; }
carl::RationalFunction<Polynomial> div(carl::Variable::Arg rhs) { return *($self)/rhs; }
carl::RationalFunction<Polynomial> div(Rational rhs) { return *($self)/rhs; }
carl::RationalFunction<Polynomial> div(const RationalFunction& rhs) { return *($self)/rhs; }
carl::RationalFunction<Polynomial> pow(uint exp) { return carl::pow(*($self),exp); }
carl::RationalFunction<Polynomial> neg() { return *$self*Rational(-1); } }
};
class RationalFunction<FactorizedPolynomial> { public: typedef typename Rational CoeffType; explicit RationalFunction(const FactorizedPolynomial& nom, const FactorizedPolynomial& denom): mPolynomialQuotient(nullptr), mNumberQuotient(), mIsSimplified(false) { }
CoeffType evaluate(const std::map<Variable, CoeffType>& substitutions) const;
inline FactorizedPolynomial nominator() const;
inline FactorizedPolynomial denominator() const;
%extend { std::string toString() { std::stringstream ss; ss << *$self; return ss.str(); } FactorizedPolynomial numerator() const { return $self->nominator(); }
std::vector<carl::Variable> gatherVariables() const { std::set<carl::Variable> asSet = $self->gatherVariables(); return std::vector<carl::Variable>(asSet.begin(),asSet.end()); }
bool equals(const carl::RationalFunction<FactorizedPolynomial>& other) { return *$self == other; } } };
}
typedef carl::RationalFunction<Polynomial> RationalFunction;
/* %template(RationalFunctionPoly) carl::RationalFunction<Polynomial>; %template(FactorizedRationalFunction) carl::RationalFunction<carl::FactorizedPolynomial<Polynomial>,false>; */
|