|
|
from __future__ import annotations
from minigrid.core.grid import Grid from minigrid.core.mission import MissionSpace from minigrid.core.world_object import Goal from minigrid.minigrid_env import MiniGridEnv
class FourRoomsEnv(MiniGridEnv):
"""
## Description
Classic four room reinforcement learning environment. The agent must navigate in a maze composed of four rooms interconnected by 4 gaps in the walls. To obtain a reward, the agent must reach the green goal square. Both the agent and the goal square are randomly placed in any of the four rooms.
## Mission Space
"reach the goal"
## Action Space
| Num | Name | Action | |-----|--------------|--------------| | 0 | left | Turn left | | 1 | right | Turn right | | 2 | forward | Move forward | | 3 | pickup | Unused | | 4 | drop | Unused | | 5 | toggle | Unused | | 6 | done | Unused |
## Observation Encoding
- Each tile is encoded as a 3 dimensional tuple: `(OBJECT_IDX, COLOR_IDX, STATE)` - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in [minigrid/minigrid.py](minigrid/minigrid.py) - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
## Rewards
A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
## Termination
The episode ends if any one of the following conditions is met:
1. The agent reaches the goal. 2. Timeout (see `max_steps`).
## Registered Configurations
- `MiniGrid-FourRooms-v0`
"""
def __init__(self, agent_pos=None, goal_pos=None, max_steps=100, **kwargs): self._agent_default_pos = agent_pos self._goal_default_pos = goal_pos
self.size = 19 mission_space = MissionSpace(mission_func=self._gen_mission)
super().__init__( mission_space=mission_space, width=self.size, height=self.size, max_steps=max_steps, **kwargs, )
@staticmethod def _gen_mission(): return "reach the goal"
def _gen_grid(self, width, height): # Create the grid self.grid = Grid(width, height)
# Generate the surrounding walls self.grid.horz_wall(0, 0) self.grid.horz_wall(0, height - 1) self.grid.vert_wall(0, 0) self.grid.vert_wall(width - 1, 0)
room_w = width // 2 room_h = height // 2
# For each row of rooms for j in range(0, 2):
# For each column for i in range(0, 2): xL = i * room_w yT = j * room_h xR = xL + room_w yB = yT + room_h
# Bottom wall and door if i + 1 < 2: self.grid.vert_wall(xR, yT, room_h) pos = (xR, self._rand_int(yT + 1, yB)) self.grid.set(*pos, None)
# Bottom wall and door if j + 1 < 2: self.grid.horz_wall(xL, yB, room_w) pos = (self._rand_int(xL + 1, xR), yB) self.grid.set(*pos, None)
# Randomize the player start position and orientation if self._agent_default_pos is not None: self.agent_pos = self._agent_default_pos self.grid.set(*self._agent_default_pos, None) # assuming random start direction self.agent_dir = self._rand_int(0, 4) else: self.place_agent()
if self._goal_default_pos is not None: goal = Goal() self.put_obj(goal, *self._goal_default_pos) goal.init_pos, goal.cur_pos = self._goal_default_pos else: self.place_obj(Goal())
|