You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

474 lines
19 KiB

import sys
import operator
from os import listdir, system
import subprocess
import re
from collections import defaultdict
from random import randrange
from ale_py import ALEInterface, SDL_SUPPORT, Action
from PIL import Image
from matplotlib import pyplot as plt
import cv2
import pickle
import queue
from dataclasses import dataclass, field
from sklearn.cluster import KMeans, DBSCAN
from enum import Enum
from copy import deepcopy
import numpy as np
import logging
logger = logging.getLogger(__name__)
#import readchar
from sample_factory.algo.utils.tensor_dict import TensorDict
from query_sample_factory_checkpoint import SampleFactoryNNQueryWrapper
import time
tempest_binary = "/home/spranger/projects/tempest-devel/ranking_release/bin/storm"
rom_file = "/home/spranger/research/Skiing/env/lib/python3.10/site-packages/AutoROM/roms/skiing.bin"
def tic():
import time
global startTime_for_tictoc
startTime_for_tictoc = time.time()
def toc():
import time
if 'startTime_for_tictoc' in globals():
return time.time() - startTime_for_tictoc
class Verdict(Enum):
INCONCLUSIVE = 1
GOOD = 2
BAD = 3
verdict_to_color_map = {Verdict.BAD: "200,0,0", Verdict.INCONCLUSIVE: "40,40,200", Verdict.GOOD: "00,200,100"}
def convert(tuples):
return dict(tuples)
@dataclass(frozen=True)
class State:
x: int
y: int
ski_position: int
velocity: int
def default_value():
return {'action' : None, 'choiceValue' : None}
@dataclass(frozen=True)
class StateValue:
ranking: float
choices: dict = field(default_factory=default_value)
def exec(command,verbose=True):
if verbose: print(f"Executing {command}")
system(f"echo {command} >> list_of_exec")
return system(command)
num_tests_per_cluster = 50
factor_tests_per_cluster = 0.2
num_ski_positions = 8
num_velocities = 8
def input_to_action(char):
if char == "0":
return Action.NOOP
if char == "1":
return Action.RIGHT
if char == "2":
return Action.LEFT
if char == "3":
return "reset"
if char == "4":
return "set_x"
if char == "5":
return "set_vel"
if char in ["w", "a", "s", "d"]:
return char
def saveObservations(observations, verdict, testDir):
testDir = f"images/testing_{experiment_id}/{verdict.name}_{testDir}_{len(observations)}"
if len(observations) < 20:
logger.warn(f"Potentially spurious test case for {testDir}")
testDir = f"{testDir}_pot_spurious"
exec(f"mkdir {testDir}", verbose=False)
for i, obs in enumerate(observations):
img = Image.fromarray(obs)
img.save(f"{testDir}/{i:003}.png")
ski_position_counter = {1: (Action.LEFT, 40), 2: (Action.LEFT, 35), 3: (Action.LEFT, 30), 4: (Action.LEFT, 10), 5: (Action.NOOP, 1), 6: (Action.RIGHT, 10), 7: (Action.RIGHT, 30), 8: (Action.RIGHT, 40) }
def run_single_test(ale, nn_wrapper, x,y,ski_position, velocity, duration=50):
#def run_single_test(ale, nn_wrapper, x,y,ski_position, duration=50):
#print(f"Running Test from x: {x:04}, y: {y:04}, ski_position: {ski_position}", end="")
testDir = f"{x}_{y}_{ski_position}_{velocity}"
#testDir = f"{x}_{y}_{ski_position}"
for i, r in enumerate(ramDICT[y]):
ale.setRAM(i,r)
ski_position_setting = ski_position_counter[ski_position]
for i in range(0,ski_position_setting[1]):
ale.act(ski_position_setting[0])
ale.setRAM(14,0)
ale.setRAM(25,x)
ale.setRAM(14,180) # TODO
all_obs = list()
speed_list = list()
resized_obs = cv2.resize(ale.getScreenGrayscale(), (84,84), interpolation=cv2.INTER_AREA)
for i in range(0,4):
all_obs.append(resized_obs)
for i in range(0,duration-4):
resized_obs = cv2.resize(ale.getScreenGrayscale(), (84,84), interpolation=cv2.INTER_AREA)
all_obs.append(resized_obs)
if i % 4 == 0:
stack_tensor = TensorDict({"obs": np.array(all_obs[-4:])})
action = nn_wrapper.query(stack_tensor)
ale.act(input_to_action(str(action)))
else:
ale.act(input_to_action(str(action)))
speed_list.append(ale.getRAM()[14])
if len(speed_list) > 15 and sum(speed_list[-6:-1]) == 0:
saveObservations(all_obs, Verdict.BAD, testDir)
return Verdict.BAD
saveObservations(all_obs, Verdict.GOOD, testDir)
return Verdict.GOOD
def computeStateRanking(mdp_file, iteration):
logger.info("Computing state ranking")
tic()
try:
command = f"{tempest_binary} --prism {mdp_file} --buildchoicelab --buildstateval --build-all-labels --prop 'Rmax=? [C <= 1000]'"
result = subprocess.run(command, shell=True, check=True)
print(result)
except Exception as e:
print(e)
sys.exit(-1)
exec(f"mv action_ranking action_ranking_{iteration:03}")
logger.info(f"Computing state ranking - DONE: took {toc()} seconds")
def fillStateRanking(file_name, match=""):
logger.info(f"Parsing state ranking, {file_name}")
tic()
state_ranking = dict()
try:
with open(file_name, "r") as f:
file_content = f.readlines()
for line in file_content:
if not "move=0" in line: continue
ranking_value = float(re.search(r"Value:([+-]?(\d*\.\d+)|\d+)", line)[0].replace("Value:",""))
if ranking_value <= 0.1:
continue
stateMapping = convert(re.findall(r"([a-zA-Z_]*[a-zA-Z])=(\d+)?", line))
#print("stateMapping", stateMapping)
choices = convert(re.findall(r"[a-zA-Z_]*(left|right|noop)[a-zA-Z_]*:(-?\d+\.?\d*)", line))
choices = {key:float(value) for (key,value) in choices.items()}
#print("choices", choices)
#print("ranking_value", ranking_value)
state = State(int(stateMapping["x"]), int(stateMapping["y"]), int(stateMapping["ski_position"]), int(stateMapping["velocity"])//2)
#state = State(int(stateMapping["x"]), int(stateMapping["y"]), int(stateMapping["ski_position"]))
value = StateValue(ranking_value, choices)
state_ranking[state] = value
logger.info(f"Parsing state ranking - DONE: took {toc()} seconds")
return state_ranking
except EnvironmentError:
print("Ranking file not available. Exiting.")
toc()
sys.exit(-1)
except:
toc()
def createDisjunction(formulas):
return " | ".join(formulas)
def clusterFormula(cluster):
if len(cluster) == 0: return
formulas = list()
for state in cluster:
formulas.append(f"(x={state[0].x} & y={state[0].y} & velocity={state[0].velocity} & ski_position={state[0].ski_position})")
while len(formulas) > 1:
formulas_tmp = [f"({formulas[i]} | {formulas[i+1]})" for i in range(0,len(formulas)//2)]
if len(formulas) % 2 == 1:
formulas_tmp.append(formulas[-1])
formulas = formulas_tmp
return "(" + formulas[0] + ")"
def clusterFormulaTrimmed(cluster):
formula = ""
states = [(s[0].x,s[0].y, s[0].ski_position, s[0].velocity) for s in cluster]
#states = [(s[0].x,s[0].y, s[0].ski_position) for s in cluster]
skiPositionGroup = defaultdict(list)
for item in states:
skiPositionGroup[item[2]].append(item)
#todo add velocity here
firstVelocity = True
for skiPosition, skiPos_group in skiPositionGroup.items():
formula += f"ski_position={skiPosition} & "
velocityGroup = defaultdict(list)
for item in skiPos_group:
velocityGroup[item[3]].append(item)
for velocity, velocity_group in velocityGroup.items():
if firstVelocity:
firstVelocity = False
else:
formula += " | "
formula += f" (velocity={velocity} & "
firstY = True
yPosGroup = defaultdict(list)
for item in velocity_group:
yPosGroup[item[1]].append(item)
for y, y_group in yPosGroup.items():
if firstY:
firstY = False
else:
formula += " | "
sorted_y_group = sorted(y_group, key=lambda s: s[0])
formula += f"( y={y} & ("
current_x_min = sorted_y_group[0][0]
current_x = sorted_y_group[0][0]
x_ranges = list()
for state in sorted_y_group[1:-1]:
if state[0] - current_x == 1:
current_x = state[0]
else:
x_ranges.append(f" ({current_x_min}<= x & x<={current_x})")
current_x_min = state[0]
current_x = state[0]
x_ranges.append(f" ({current_x_min}<= x & x<={sorted_y_group[-1][0]})")
formula += " | ".join(x_ranges)
formula += ") )"
formula += ")"
return formula
def createBalancedDisjunction(indices, name):
#logger.info(f"Creating balanced disjunction for {len(indices)} ({indices}) formulas")
if len(indices) == 0:
return f"formula {name} = false;\n"
else:
while len(indices) > 1:
indices_tmp = [f"({indices[i]} | {indices[i+1]})" for i in range(0,len(indices)//2)]
if len(indices) % 2 == 1:
indices_tmp.append(indices[-1])
indices = indices_tmp
disjunction = f"formula {name} = " + " ".join(indices) + ";\n"
return disjunction
def createUnsafeFormula(clusters):
label = "label \"Unsafe\" = Unsafe;\n"
formulas = ""
indices = list()
for i, cluster in enumerate(clusters):
formulas += f"formula Unsafe_{i} = {clusterFormulaTrimmed(cluster)};\n"
indices.append(f"Unsafe_{i}")
return formulas + "\n" + createBalancedDisjunction(indices, "Unsafe")# + label
def createSafeFormula(clusters):
label = "label \"Safe\" = Safe;\n"
formulas = ""
indices = list()
for i, cluster in enumerate(clusters):
formulas += f"formula Safe_{i} = {clusterFormula(cluster)};\n"
indices.append(f"Safe_{i}")
return formulas + "\n" + createBalancedDisjunction(indices, "Safe")# + label
def updatePrismFile(newFile, iteration, safeStates, unsafeStates):
logger.info("Creating next prism file")
tic()
initFile = f"{newFile}_no_formulas.prism"
newFile = f"{newFile}_{iteration:03}.prism"
exec(f"cp {initFile} {newFile}", verbose=False)
with open(newFile, "a") as prism:
prism.write(createSafeFormula(safeStates))
prism.write(createUnsafeFormula(unsafeStates))
logger.info(f"Creating next prism file - DONE: took {toc()} seconds")
ale = ALEInterface()
#if SDL_SUPPORT:
# ale.setBool("sound", True)
# ale.setBool("display_screen", True)
# Load the ROM file
ale.loadROM(rom_file)
with open('all_positions_v2.pickle', 'rb') as handle:
ramDICT = pickle.load(handle)
y_ram_setting = 60
x = 70
nn_wrapper = SampleFactoryNNQueryWrapper()
experiment_id = int(time.time())
init_mdp = "velocity_safety"
exec(f"mkdir -p images/testing_{experiment_id}", verbose=False)
markerSize = 1
imagesDir = f"images/testing_{experiment_id}"
def drawOntoSkiPosImage(states, color, target_prefix="cluster_", alpha_factor=1.0):
#markerList = {ski_position:list() for ski_position in range(1,num_ski_positions + 1)}
markerList = {(ski_position, velocity):list() for velocity in range(0, num_velocities + 1) for ski_position in range(1,num_ski_positions + 1)}
for state in states:
s = state[0]
#marker = f"-fill 'rgba({color}, {alpha_factor * state[1].ranking})' -draw 'rectangle {s.x-markerSize},{s.y-markerSize} {s.x+markerSize},{s.y+markerSize} '"
marker = f"-fill 'rgba({color}, {alpha_factor * state[1].ranking})' -draw 'point {s.x},{s.y} '"
markerList[(s.ski_position, s.velocity)].append(marker)
for (pos, vel), marker in markerList.items():
command = f"convert {imagesDir}/{target_prefix}_{pos:02}_{vel:02}_individual.png {' '.join(marker)} {imagesDir}/{target_prefix}_{pos:02}_{vel:02}_individual.png"
exec(command, verbose=False)
def concatImages(prefix, iteration):
images = [f"{imagesDir}/{prefix}_{pos:02}_{vel:02}_individual.png" for vel in range(0,num_velocities+1) for pos in range(1,num_ski_positions+1) ]
for vel in range(0, num_velocities + 1):
for pos in range(1, num_ski_positions + 1):
command = f"convert {imagesDir}/{prefix}_{pos:02}_{vel:02}_individual.png "
command += f"-pointsize 10 -gravity NorthEast -annotate +8+0 'p{pos:02}v{vel:02}' "
command += f"{imagesDir}/{prefix}_{pos:02}_{vel:02}_individual.png"
exec(command, verbose=False)
exec(f"montage {' '.join(images)} -geometry +0+0 -tile 8x9 {imagesDir}/{prefix}_{iteration}.png", verbose=False)
#exec(f"sxiv {imagesDir}/{prefix}_{iteration}.png&", verbose=False)
def drawStatesOntoTiledImage(states, color, target, source="images/1_full_scaled_down.png", alpha_factor=1.0):
"""
Useful to draw a set of states, e.g. a single cluster
markerList = {1: list(), 2:list(), 3:list(), 4:list(), 5:list(), 6:list(), 7:list(), 8:list()}
logger.info(f"Drawing {len(states)} states onto {target}")
tic()
for state in states:
s = state[0]
marker = f"-fill 'rgba({color}, {alpha_factor * state[1].ranking})' -draw 'rectangle {s.x-markerSize},{s.y-markerSize} {s.x+markerSize},{s.y+markerSize} '"
markerList[s.ski_position].append(marker)
for pos, marker in markerList.items():
command = f"convert {source} {' '.join(marker)} {imagesDir}/{target}_{pos:02}_individual.png"
exec(command, verbose=False)
exec(f"montage {imagesDir}/{target}_*_individual.png -geometry +0+0 -tile x1 {imagesDir}/{target}.png", verbose=False)
logger.info(f"Drawing {len(states)} states onto {target} - Done: took {toc()} seconds")
"""
def drawClusters(clusterDict, target, iteration, alpha_factor=1.0):
logger.info(f"Drawing clusters")
tic()
for velocity in range(0, num_velocities + 1):
for ski_position in range(1, num_ski_positions + 1):
source = "images/1_full_scaled_down.png"
exec(f"cp {source} {imagesDir}/{target}_{ski_position:02}_{velocity:02}_individual.png", verbose=False)
for _, clusterStates in clusterDict.items():
color = f"{np.random.choice(range(256))}, {np.random.choice(range(256))}, {np.random.choice(range(256))}"
drawOntoSkiPosImage(clusterStates, color, target, alpha_factor=alpha_factor)
concatImages(target, iteration)
logger.info(f"Drawing clusters - DONE: took {toc()} seconds")
def drawResult(clusterDict, target, iteration):
logger.info(f"Drawing clusters")
for velocity in range(0,num_velocities+1):
for ski_position in range(1, num_ski_positions + 1):
source = "images/1_full_scaled_down.png"
exec(f"cp {source} {imagesDir}/{target}_{ski_position:02}_{velocity:02}_individual.png", verbose=False)
for _, (clusterStates, result) in clusterDict.items():
color = "100,100,100"
if result == Verdict.GOOD:
color = "0,200,0"
elif result == Verdict.BAD:
color = "200,0,0"
drawOntoSkiPosImage(clusterStates, color, target, alpha_factor=0.7)
concatImages(target, iteration)
logger.info(f"Drawing clusters - DONE: took {toc()} seconds")
def _init_logger():
logger = logging.getLogger('main')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter( '[%(levelname)s] %(module)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
def clusterImportantStates(ranking, iteration):
logger.info(f"Starting to cluster {len(ranking)} states into clusters")
tic()
states = [[s[0].x,s[0].y, s[0].ski_position * 20, s[0].velocity * 20, s[1].ranking] for s in ranking]
#states = [[s[0].x,s[0].y, s[0].ski_position * 30, s[1].ranking] for s in ranking]
#kmeans = KMeans(n_clusters, random_state=0, n_init="auto").fit(states)
dbscan = DBSCAN(eps=15).fit(states)
labels = dbscan.labels_
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
logger.info(f"Starting to cluster {len(ranking)} states into clusters - DONE: took {toc()} seconds with {n_clusters} cluster")
clusterDict = {i : list() for i in range(0,n_clusters)}
for i, state in enumerate(ranking):
if labels[i] == -1: continue
clusterDict[labels[i]].append(state)
drawClusters(clusterDict, f"clusters", iteration)
return clusterDict
if __name__ == '__main__':
_init_logger()
logger = logging.getLogger('main')
logger.info("Starting")
n_clusters = 40
testAll = False
safeStates = list()
unsafeStates = list()
iteration = 0
while True:
updatePrismFile(init_mdp, iteration, safeStates, unsafeStates)
computeStateRanking(f"{init_mdp}_{iteration:03}.prism", iteration)
ranking = fillStateRanking(f"action_ranking_{iteration:03}")
sorted_ranking = sorted( (x for x in ranking.items() if x[1].ranking > 0.1), key=lambda x: x[1].ranking)
clusters = clusterImportantStates(sorted_ranking, iteration)
if testAll: failingPerCluster = {i: list() for i in range(0, n_clusters)}
clusterResult = dict()
for id, cluster in clusters.items():
num_tests = int(factor_tests_per_cluster * len(cluster))
num_tests = 1
#logger.info(f"Testing {num_tests} states (from {len(cluster)} states) from cluster {id}")
randomStates = np.random.choice(len(cluster), num_tests, replace=False)
randomStates = [cluster[i] for i in randomStates]
verdictGood = True
for state in randomStates:
x = state[0].x
y = state[0].y
ski_pos = state[0].ski_position
velocity = state[0].velocity
#result = run_single_test(ale,nn_wrapper,x,y,ski_pos, duration=50)
result = run_single_test(ale,nn_wrapper,x,y,ski_pos, velocity, duration=50)
result = Verdict.BAD # TODO REMOVE ME!!!!!!!!!!!!!!
if result == Verdict.BAD:
if testAll:
failingPerCluster[id].append(state)
else:
clusterResult[id] = (cluster, Verdict.BAD)
verdictGood = False
unsafeStates.append(cluster)
break
if verdictGood:
clusterResult[id] = (cluster, Verdict.GOOD)
safeStates.append(cluster)
logger.info(f"Iteration: {iteration:03} -\tSafe Results : {sum([len(c) for c in safeStates])} -\tUnsafe Results:{sum([len(c) for c in unsafeStates])}")
if testAll: drawClusters(failingPerCluster, f"failing", iteration)
#drawResult(clusterResult, "result", iteration)
iteration += 1