You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

189 lines
5.8 KiB

import sys
from random import randrange
from ale_py import ALEInterface, SDL_SUPPORT, Action
from colors import *
from PIL import Image
from matplotlib import pyplot as plt
import cv2
import pickle
import queue
from copy import deepcopy
import numpy as np
import readchar
from sample_factory.algo.utils.tensor_dict import TensorDict
from query_sample_factory_checkpoint import SampleFactoryNNQueryWrapper
import time
def input_to_action(char):
if char == "0":
return Action.NOOP
if char == "1":
return Action.RIGHT
if char == "2":
return Action.LEFT
if char == "3":
return "reset"
if char == "4":
return "set_x"
if char == "5":
return "set_vel"
if char in ["w", "a", "s", "d"]:
return char
ski_position_counter = {1: (Action.LEFT, 40), 2: (Action.LEFT, 35), 3: (Action.LEFT, 30), 4: (Action.LEFT, 10), 5: (Action.NOOP, 1), 6: (Action.RIGHT, 10), 7: (Action.RIGHT, 30), 8: (Action.RIGHT, 40) }
def run_single_test(ale, nn_wrapper, x,y,ski_position, duration=200):
print(f"Running Test from x: {x:04}, y: {y:04}, ski_position: {ski_position}")
for i, r in enumerate(ramDICT[y]):
ale.setRAM(i,r)
ski_position_setting = ski_position_counter[ski_position]
for i in range(0,ski_position_setting[1]):
ale.act(ski_position_setting[0])
ale.setRAM(14,0)
ale.setRAM(25,x)
ale.setRAM(14,180)
all_obs = list()
for i in range(0,duration):
resized_obs = cv2.resize(ale.getScreenGrayscale() , (84,84), interpolation=cv2.INTER_AREA)
all_obs.append(resized_obs)
if len(all_obs) >= 4:
stack_tensor = TensorDict({"obs": np.array(all_obs[-4:])})
action = nn_wrapper.query(stack_tensor)
ale.act(input_to_action(str(action)))
else:
ale.act(Action.NOOP)
time.sleep(0.005)
ale = ALEInterface()
if SDL_SUPPORT:
ale.setBool("sound", True)
ale.setBool("display_screen", True)
# Load the ROM file
rom_file = "/home/spranger/research/Skiing/env/lib/python3.8/site-packages/AutoROM/roms/skiing.bin"
ale.loadROM(rom_file)
# Get the list of legal actions
with open('all_positions_v2.pickle', 'rb') as handle:
ramDICT = pickle.load(handle)
#ramDICT = dict()
#for i,r in enumerate(ramDICT[235]):
# ale.setRAM(i,r)
y_ram_setting = 60
x = 70
nn_wrapper = SampleFactoryNNQueryWrapper()
#run_single_test(ale, nn_wrapper, 70,61,5)
#input("")
run_single_test(ale, nn_wrapper, 30,61,5,duration=1000)
run_single_test(ale, nn_wrapper, 114,170,7)
run_single_test(ale, nn_wrapper, 124,170,5)
run_single_test(ale, nn_wrapper, 134,170,2)
run_single_test(ale, nn_wrapper, 120,185,1)
run_single_test(ale, nn_wrapper, 134,170,8)
run_single_test(ale, nn_wrapper, 85,195,8)
velocity_set = False
for episode in range(10):
total_reward = 0
j = 0
while not ale.game_over():
if not velocity_set: ale.setRAM(14,0)
j += 1
a = input_to_action(repr(readchar.readchar())[1])
#a = Action.NOOP
if a == "w":
y_ram_setting -= 1
if y_ram_setting <= 61:
y_ram_setting = 61
for i, r in enumerate(ramDICT[y_ram_setting]):
ale.setRAM(i,r)
ale.setRAM(25,x)
ale.act(Action.NOOP)
elif a == "s":
y_ram_setting += 1
if y_ram_setting >= 1950:
y_ram_setting = 1945
for i, r in enumerate(ramDICT[y_ram_setting]):
ale.setRAM(i,r)
ale.setRAM(25,x)
ale.act(Action.NOOP)
elif a == "a":
x -= 1
if x <= 0:
x = 0
ale.setRAM(25,x)
ale.act(Action.NOOP)
elif a == "d":
x += 1
if x >= 144:
x = 144
ale.setRAM(25,x)
ale.act(Action.NOOP)
elif a == "reset":
ram_pos = input("Ram Position:")
for i, r in enumerate(ramDICT[int(ram_pos)]):
ale.setRAM(i,r)
ale.act(Action.NOOP)
# Apply an action and get the resulting reward
elif a == "set_x":
x = int(input("X:"))
ale.setRAM(25, x)
ale.act(Action.NOOP)
elif a == "set_vel":
vel = input("Velocity:")
ale.setRAM(14, int(vel))
ale.act(Action.NOOP)
velocity_set = True
else:
reward = ale.act(a)
ram = ale.getRAM()
#if j % 2 == 0:
# y_pixel = int(j*1/2) + 55
# ramDICT[y_pixel] = ram
# print(f"saving to {y_pixel:04}")
# if y_pixel == 126 or y_pixel == 235:
# input("")
int_old_ram = list(map(int, oldram))
int_ram = list(map(int, ram))
difference = list()
for o, r in zip(int_old_ram, int_ram):
difference.append(r-o)
oldram = deepcopy(ram)
#print(f"player_x: {ram[25]},\tclock_m: {ram[104]},\tclock_s: {ram[105]},\tclock_ms: {ram[106]},\tscore: {ram[107]}")
print(f"player_x: {ram[25]},\tplayer_y: {y_ram_setting}")
#print(f"y_0: {ram[86]}, y_1: {ram[87]}, y_2: {ram[88]}, y_3: {ram[89]}, y_4: {ram[90]}, y_5: {ram[91]}, y_6: {ram[92]}, y_7: {ram[93]}, y_8: {ram[94]}")
#for i, r in enumerate(ram):
# print('{:03}:{:02x} '.format(i,r), end="")
# if i % 16 == 15: print("")
#print("")
#for i, r in enumerate(difference):
# string = '{:02}:{:03} '.format(i%100,r)
# if r != 0:
# print(color(string, fg='red'), end="")
# else:
# print(string, end="")
# if i % 16 == 15: print("")
print("Episode %d ended with score: %d" % (episode, total_reward))
input("")
with open('all_positions_v2.pickle', 'wb') as handle:
pickle.dump(ramDICT, handle, protocol=pickle.HIGHEST_PROTOCOL)
ale.reset_game()