|
|
@ -70,24 +70,9 @@ def exec(command,verbose=True): |
|
|
|
system(f"echo {command} >> list_of_exec") |
|
|
|
return system(command) |
|
|
|
|
|
|
|
num_tests_per_cluster = 50 |
|
|
|
factor_tests_per_cluster = 0.2 |
|
|
|
num_ski_positions = 8 |
|
|
|
def model_to_actual(ski_position): |
|
|
|
if ski_position == 1: |
|
|
|
return 1 |
|
|
|
elif ski_position in [2,3]: |
|
|
|
return 2 |
|
|
|
elif ski_position in [4,5]: |
|
|
|
return 3 |
|
|
|
elif ski_position in [6,7]: |
|
|
|
return 4 |
|
|
|
elif ski_position in [8,9]: |
|
|
|
return 5 |
|
|
|
elif ski_position in [10,11]: |
|
|
|
return 6 |
|
|
|
elif ski_position in [12,13]: |
|
|
|
return 7 |
|
|
|
elif ski_position == 14: |
|
|
|
return 8 |
|
|
|
|
|
|
|
def input_to_action(char): |
|
|
|
if char == "0": |
|
|
@ -117,9 +102,20 @@ def drawImportantStates(important_states): |
|
|
|
command = f"convert images/1_full_scaled_down.png {' '.join(draw_commands[i])} first_try_{i:02}.png" |
|
|
|
exec(command) |
|
|
|
|
|
|
|
def saveObservations(observations, verdict, testDir): |
|
|
|
testDir = f"images/testing_{experiment_id}/{verdict.name}_{testDir}_{len(observations)}" |
|
|
|
if len(observations) < 20: |
|
|
|
logger.warn(f"Potentially spurious test case for {testDir}") |
|
|
|
testDir = f"{testDir}_pot_spurious" |
|
|
|
exec(f"mkdir {testDir}", verbose=False) |
|
|
|
for i, obs in enumerate(observations): |
|
|
|
img = Image.fromarray(obs) |
|
|
|
img.save(f"{testDir}/{i:003}.png") |
|
|
|
|
|
|
|
ski_position_counter = {1: (Action.LEFT, 40), 2: (Action.LEFT, 35), 3: (Action.LEFT, 30), 4: (Action.LEFT, 10), 5: (Action.NOOP, 1), 6: (Action.RIGHT, 10), 7: (Action.RIGHT, 30), 8: (Action.RIGHT, 40) } |
|
|
|
def run_single_test(ale, nn_wrapper, x,y,ski_position, duration=200): |
|
|
|
#print(f"Running Test from x: {x:04}, y: {y:04}, ski_position: {ski_position}", end="") |
|
|
|
testDir = f"{x}_{y}_{ski_position}" |
|
|
|
for i, r in enumerate(ramDICT[y]): |
|
|
|
ale.setRAM(i,r) |
|
|
|
ski_position_setting = ski_position_counter[ski_position] |
|
|
@ -134,8 +130,9 @@ def run_single_test(ale, nn_wrapper, x,y,ski_position, duration=200): |
|
|
|
first_action_set = False |
|
|
|
first_action = 0 |
|
|
|
for i in range(0,duration): |
|
|
|
resized_obs = cv2.resize(ale.getScreenGrayscale() , (84,84), interpolation=cv2.INTER_AREA) |
|
|
|
all_obs.append(resized_obs) |
|
|
|
resized_obs = cv2.resize(ale.getScreenGrayscale(), (84,84), interpolation=cv2.INTER_AREA) |
|
|
|
for i in range(0,4): |
|
|
|
all_obs.append(resized_obs) |
|
|
|
if len(all_obs) >= 4: |
|
|
|
stack_tensor = TensorDict({"obs": np.array(all_obs[-4:])}) |
|
|
|
action = nn_wrapper.query(stack_tensor) |
|
|
@ -147,9 +144,10 @@ def run_single_test(ale, nn_wrapper, x,y,ski_position, duration=200): |
|
|
|
ale.act(Action.NOOP) |
|
|
|
speed_list.append(ale.getRAM()[14]) |
|
|
|
if len(speed_list) > 15 and sum(speed_list[-6:-1]) == 0: |
|
|
|
return (Verdict.BAD, first_action) |
|
|
|
#time.sleep(0.005) |
|
|
|
return (Verdict.INCONCLUSIVE, first_action) |
|
|
|
saveObservations(all_obs, Verdict.BAD, testDir) |
|
|
|
return Verdict.BAD |
|
|
|
saveObservations(all_obs, Verdict.GOOD, testDir) |
|
|
|
return Verdict.GOOD |
|
|
|
|
|
|
|
def optimalAction(choices): |
|
|
|
return max(choices.items(), key=operator.itemgetter(1))[0] |
|
|
@ -245,19 +243,16 @@ x = 70 |
|
|
|
nn_wrapper = SampleFactoryNNQueryWrapper() |
|
|
|
|
|
|
|
iteration = 0 |
|
|
|
id = int(time.time()) |
|
|
|
init_mdp = "velocity" |
|
|
|
exec(f"mkdir -p images/testing_{id}") |
|
|
|
exec(f"cp 1_full_scaled_down.png images/testing_{id}/testing_0000.png") |
|
|
|
experiment_id = int(time.time()) |
|
|
|
init_mdp = "velocity_safety" |
|
|
|
exec(f"mkdir -p images/testing_{experiment_id}") |
|
|
|
exec(f"cp 1_full_scaled_down.png images/testing_{experiment_id}/testing_0000.png") |
|
|
|
exec(f"cp {init_mdp}.prism {init_mdp}_000.prism") |
|
|
|
|
|
|
|
markerSize = 1 |
|
|
|
#markerList = {1: list(), 2:list(), 3:list(), 4:list(), 5:list(), 6:list(), 7:list(), 8:list()} |
|
|
|
|
|
|
|
def f(n): |
|
|
|
if n >= 1.0: |
|
|
|
return True |
|
|
|
return False |
|
|
|
imagesDir = f"images/testing_{experiment_id}" |
|
|
|
|
|
|
|
def drawOntoSkiPosImage(states, color, target_prefix="cluster_", alpha_factor=1.0): |
|
|
|
markerList = {ski_position:list() for ski_position in range(1,num_ski_positions + 1)} |
|
|
@ -266,12 +261,13 @@ def drawOntoSkiPosImage(states, color, target_prefix="cluster_", alpha_factor=1. |
|
|
|
marker = f"-fill 'rgba({color}, {alpha_factor * state[1].ranking})' -draw 'rectangle {s.x-markerSize},{s.y-markerSize} {s.x+markerSize},{s.y+markerSize} '" |
|
|
|
markerList[s.ski_position].append(marker) |
|
|
|
for pos, marker in markerList.items(): |
|
|
|
command = f"convert images/testing_{id}/{target_prefix}_{pos:02}.png {' '.join(marker)} images/testing_{id}/{target_prefix}_{pos:02}.png" |
|
|
|
command = f"convert {imagesDir}/{target_prefix}_{pos:02}.png {' '.join(marker)} {imagesDir}/{target_prefix}_{pos:02}.png" |
|
|
|
exec(command, verbose=False) |
|
|
|
|
|
|
|
|
|
|
|
def concatImages(prefix): |
|
|
|
exec(f"montage images/testing_{id}/{prefix}_*png -geometry +0+0 -tile x1 images/testing_{id}/{prefix}.png", verbose=False) |
|
|
|
exec(f"montage {imagesDir}/{prefix}_*png -geometry +0+0 -tile x1 {imagesDir}/{prefix}.png", verbose=False) |
|
|
|
exec(f"sxiv {imagesDir}/{prefix}.png&") |
|
|
|
|
|
|
|
def drawStatesOntoTiledImage(states, color, target, source="images/1_full_scaled_down.png", alpha_factor=1.0): |
|
|
|
""" |
|
|
@ -285,20 +281,32 @@ def drawStatesOntoTiledImage(states, color, target, source="images/1_full_scaled |
|
|
|
marker = f"-fill 'rgba({color}, {alpha_factor * state[1].ranking})' -draw 'rectangle {s.x-markerSize},{s.y-markerSize} {s.x+markerSize},{s.y+markerSize} '" |
|
|
|
markerList[s.ski_position].append(marker) |
|
|
|
for pos, marker in markerList.items(): |
|
|
|
command = f"convert {source} {' '.join(marker)} images/testing_{id}/{target}_{pos:02}.png" |
|
|
|
command = f"convert {source} {' '.join(marker)} {imagesDir}/{target}_{pos:02}.png" |
|
|
|
exec(command, verbose=False) |
|
|
|
exec(f"montage images/testing_{id}/{target}_*png -geometry +0+0 -tile x1 images/testing_{id}/{target}.png", verbose=False) |
|
|
|
exec(f"montage {imagesDir}/{target}_*png -geometry +0+0 -tile x1 {imagesDir}/{target}.png", verbose=False) |
|
|
|
logger.info(f"Drawing {len(states)} states onto {target} - Done: took {toc()} seconds") |
|
|
|
|
|
|
|
def drawClusters(clusterDict, target, alpha_factor=1.0): |
|
|
|
for ski_position in range(1, num_ski_positions + 1): |
|
|
|
source = "images/1_full_scaled_down.png" |
|
|
|
exec(f"cp {source} images/testing_{id}/{target}_{ski_position:02}.png") |
|
|
|
exec(f"cp {source} {imagesDir}/{target}_{ski_position:02}.png") |
|
|
|
for _, clusterStates in clusterDict.items(): |
|
|
|
color = f"{np.random.choice(range(256))}, {np.random.choice(range(256))}, {np.random.choice(range(256))}" |
|
|
|
drawOntoSkiPosImage(clusterStates, color, f"clusters") |
|
|
|
concatImages("clusters") |
|
|
|
drawOntoSkiPosImage(clusterStates, color, target, alpha_factor=alpha_factor) |
|
|
|
concatImages(target) |
|
|
|
|
|
|
|
def drawResult(clusterDict, target): |
|
|
|
for ski_position in range(1, num_ski_positions + 1): |
|
|
|
source = "images/1_full_scaled_down.png" |
|
|
|
exec(f"cp {source} {imagesDir}/{target}_{ski_position:02}.png") |
|
|
|
for _, (clusterStates, result) in clusterDict.items(): |
|
|
|
color = "100,100,100" |
|
|
|
if result == Verdict.GOOD: |
|
|
|
color = "0,200,0" |
|
|
|
elif result == Verdict.BAD: |
|
|
|
color = "200,0,0" |
|
|
|
drawOntoSkiPosImage(clusterStates, color, target, alpha_factor=0.7) |
|
|
|
concatImages(target) |
|
|
|
|
|
|
|
def _init_logger(): |
|
|
|
logger = logging.getLogger('main') |
|
|
@ -308,7 +316,7 @@ def _init_logger(): |
|
|
|
handler.setFormatter(formatter) |
|
|
|
logger.addHandler(handler) |
|
|
|
|
|
|
|
def clusterImportantStates(ranking, n_clusters=10): |
|
|
|
def clusterImportantStates(ranking, n_clusters=40): |
|
|
|
logger.info(f"Starting to cluster {len(ranking)} states into {n_clusters} cluster") |
|
|
|
tic() |
|
|
|
states = [[s[0].x,s[0].y, s[0].ski_position * 10, s[1].ranking] for s in ranking] |
|
|
@ -324,36 +332,39 @@ if __name__ == '__main__': |
|
|
|
_init_logger() |
|
|
|
logger = logging.getLogger('main') |
|
|
|
logger.info("Starting") |
|
|
|
n_clusters = 40 |
|
|
|
testAll = False |
|
|
|
while True: |
|
|
|
#computeStateRanking(f"{init_mdp}_{iteration:03}.prism") |
|
|
|
ranking = fillStateRanking("action_ranking") |
|
|
|
sorted_ranking = sorted( (x for x in ranking.items() if x[1].ranking > 0.1), key=lambda x: x[1].ranking) |
|
|
|
print(type(sorted_ranking)) |
|
|
|
clusters = clusterImportantStates(sorted_ranking) |
|
|
|
clusters = clusterImportantStates(sorted_ranking, n_clusters) |
|
|
|
|
|
|
|
if testAll: failingPerCluster = {i: list() for i in range(0, n_clusters)} |
|
|
|
clusterResult = dict() |
|
|
|
for id, cluster in clusters.items(): |
|
|
|
num_tests = int(factor_tests_per_cluster * len(cluster)) |
|
|
|
num_tests = 1 |
|
|
|
logger.info(f"Testing {num_tests} states (from {len(cluster)} states) from cluster {id}") |
|
|
|
randomStates = np.random.choice(len(cluster), num_tests, replace=False) |
|
|
|
randomStates = [cluster[i] for i in randomStates] |
|
|
|
|
|
|
|
verdictGood = True |
|
|
|
for state in randomStates: |
|
|
|
x = state[0].x |
|
|
|
y = state[0].y |
|
|
|
ski_pos = state[0].ski_position |
|
|
|
result = run_single_test(ale,nn_wrapper,x,y,ski_pos, duration=50) |
|
|
|
if result == Verdict.BAD: |
|
|
|
if testAll: |
|
|
|
failingPerCluster[id].append(state) |
|
|
|
else: |
|
|
|
clusterResult[id] = (cluster, Verdict.BAD) |
|
|
|
verdictGood = False |
|
|
|
break |
|
|
|
if verdictGood: |
|
|
|
clusterResult[id] = (cluster, Verdict.GOOD) |
|
|
|
if testAll: drawClusters(failingPerCluster, f"failing") |
|
|
|
drawResult(clusterResult, "result") |
|
|
|
|
|
|
|
sys.exit(1) |
|
|
|
#for i, state in enumerate(sorted_ranking): |
|
|
|
# print(state) |
|
|
|
# if i % 10 == 0: |
|
|
|
# input("") |
|
|
|
#print(len(sorted_ranking)) |
|
|
|
|
|
|
|
""" |
|
|
|
for important_state in ranking[-100:-1]: |
|
|
|
optimal_choice = optimalAction(important_state[1].choices) |
|
|
|
#print(important_state[1].choices, f"\t\tOptimal: {optimal_choice}") |
|
|
|
x = important_state[0].x |
|
|
|
y = important_state[0].y |
|
|
|
ski_pos = model_to_actual(important_state[0].ski_position) |
|
|
|
result = run_single_test(ale,nn_wrapper,x,y,ski_pos, duration=50) |
|
|
|
#print(f".... {result}") |
|
|
|
marker = f"-fill 'rgba({verdict_to_color_map[result[0]],0.7})' -draw 'rectangle {x-markerSize},{y-markerSize} {x+markerSize},{y+markerSize} '" |
|
|
|
markerList[ski_pos].append(marker) |
|
|
|
populate_fixed_actions(important_state[0], result[1]) |
|
|
|
for pos, marker in markerList.items(): |
|
|
|
command = f"convert images/testing_{id}/testing_0000.png {' '.join(marker)} images/testing_{id}/testing_{iteration+1:03}_{pos:02}.png" |
|
|
|
exec(command, verbose=False) |
|
|
|
exec(f"montage images/testing_{id}/testing_{iteration+1:03}_*png -geometry +0+0 -tile x1 images/testing_{id}/{iteration+1:03}.png", verbose=False) |
|
|
|
iteration += 1 |
|
|
|
""" |
|
|
|
update_prism_file(f"{init_mdp}_{iteration-1:03}.prism", f"{init_mdp}_{iteration:03}.prism") |