3 changed files with 674 additions and 109 deletions
			
			
		| @ -0,0 +1,605 @@ | |||
| import sys | |||
| import operator | |||
| from copy import deepcopy | |||
| from os import listdir, system | |||
| import subprocess | |||
| import re | |||
| from collections import defaultdict | |||
| 
 | |||
| from random import randrange | |||
| from ale_py import ALEInterface, SDL_SUPPORT, Action | |||
| from PIL import Image | |||
| from matplotlib import pyplot as plt | |||
| import cv2 | |||
| import pickle | |||
| import queue | |||
| from dataclasses import dataclass, field | |||
| 
 | |||
| from sklearn.cluster import KMeans, DBSCAN | |||
| 
 | |||
| from enum import Enum | |||
| 
 | |||
| from copy import deepcopy | |||
| 
 | |||
| import numpy as np | |||
| 
 | |||
| import logging | |||
| logger = logging.getLogger(__name__) | |||
| 
 | |||
| #import readchar | |||
| 
 | |||
| from sample_factory.algo.utils.tensor_dict import TensorDict | |||
| from query_sample_factory_checkpoint import SampleFactoryNNQueryWrapper | |||
| 
 | |||
| import time | |||
| 
 | |||
| tempest_binary = "/home/spranger/projects/tempest-devel/ranking_release/bin/storm" | |||
| rom_file = "/home/spranger/research/Skiing/env/lib/python3.10/site-packages/AutoROM/roms/skiing.bin" | |||
| 
 | |||
| def tic(): | |||
|     import time | |||
|     global startTime_for_tictoc | |||
|     startTime_for_tictoc = time.time() | |||
| 
 | |||
| def toc(): | |||
|     import time | |||
|     if 'startTime_for_tictoc' in globals(): | |||
|         return time.time() - startTime_for_tictoc | |||
| 
 | |||
| class Verdict(Enum): | |||
|     INCONCLUSIVE = 1 | |||
|     GOOD = 2 | |||
|     BAD = 3 | |||
| 
 | |||
| verdict_to_color_map = {Verdict.BAD: "200,0,0", Verdict.INCONCLUSIVE: "40,40,200", Verdict.GOOD: "00,200,100"} | |||
| 
 | |||
| def convert(tuples): | |||
|     return dict(tuples) | |||
| 
 | |||
| @dataclass(frozen=True) | |||
| class State: | |||
|     x: int | |||
|     y: int | |||
|     ski_position: int | |||
|     velocity: int | |||
| def default_value(): | |||
|     return {'action' : None, 'choiceValue' : None} | |||
| 
 | |||
| @dataclass(frozen=True) | |||
| class StateValue: | |||
|     ranking: float | |||
|     choices: dict = field(default_factory=default_value) | |||
| 
 | |||
| @dataclass(frozen=False) | |||
| class TestResult: | |||
|     init_check_pes_min: float | |||
|     init_check_pes_max: float | |||
|     init_check_pes_avg: float | |||
|     init_check_opt_min: float | |||
|     init_check_opt_max: float | |||
|     init_check_opt_avg: float | |||
|     safe_states: int | |||
|     unsafe_states: int | |||
|     safe_cluster: int | |||
|     unsafe_cluster: int | |||
|     good_verdicts: int | |||
|     bad_verdicts: int | |||
|     policy_queries: int | |||
|     def __str__(self): | |||
|         return f"""Test Result: | |||
|     init_check_pes_min: {self.init_check_pes_min} | |||
|     init_check_pes_max: {self.init_check_pes_max} | |||
|     init_check_pes_avg: {self.init_check_pes_avg} | |||
|     init_check_opt_min: {self.init_check_opt_min} | |||
|     init_check_opt_max: {self.init_check_opt_max} | |||
|     init_check_opt_avg: {self.init_check_opt_avg} | |||
| """ | |||
|     @staticmethod | |||
|     def csv_header(ws=" "): | |||
|         string =  f"pesmin{ws}pesmax{ws}pesavg{ws}" | |||
|         string += f"optmin{ws}optmax{ws}optavg{ws}" | |||
|         string += f"sState{ws}uState{ws}" | |||
|         string += f"sClust{ws}uClust{ws}" | |||
|         string += f"gVerd{ws}bVerd{ws}queries" | |||
|         return string | |||
| 
 | |||
|     def csv(self): | |||
|         ws = " " | |||
|         string =  f"{self.init_check_pes_min:0.04f}{ws}{self.init_check_pes_max:0.04f}{ws}{self.init_check_pes_avg:0.04f}{ws}" | |||
|         string += f"{self.init_check_opt_min:0.04f}{ws}{self.init_check_opt_max:0.04f}{ws}{self.init_check_opt_avg:0.04f}{ws}" | |||
|         ws = "\t" | |||
|         string += f"{self.safe_states}{ws}{self.unsafe_states}{ws}" | |||
|         string += f"{self.safe_cluster}{ws}{self.unsafe_cluster}{ws}" | |||
|         string += f"{self.good_verdicts}{ws}{self.bad_verdicts}{ws}{self.policy_queries}" | |||
|         return string | |||
| 
 | |||
| 
 | |||
| def exec(command,verbose=True): | |||
|     if verbose: print(f"Executing {command}") | |||
|     system(f"echo {command} >> list_of_exec") | |||
|     return system(command) | |||
| 
 | |||
| num_tests_per_cluster = 50 | |||
| #factor_tests_per_cluster = 0.2 | |||
| num_ski_positions = 8 | |||
| num_velocities = 5 | |||
| 
 | |||
| def input_to_action(char): | |||
|     if char == "0": | |||
|         return Action.NOOP | |||
|     if char == "1": | |||
|         return Action.RIGHT | |||
|     if char == "2": | |||
|         return Action.LEFT | |||
|     if char == "3": | |||
|         return "reset" | |||
|     if char == "4": | |||
|         return "set_x" | |||
|     if char == "5": | |||
|         return "set_vel" | |||
|     if char in ["w", "a", "s", "d"]: | |||
|         return char | |||
| 
 | |||
| def saveObservations(observations, verdict, testDir): | |||
|     testDir = f"images/testing_{experiment_id}/{verdict.name}_{testDir}_{len(observations)}" | |||
|     if len(observations) < 20: | |||
|         logger.warn(f"Potentially spurious test case for {testDir}") | |||
|         testDir = f"{testDir}_pot_spurious" | |||
|     exec(f"mkdir {testDir}", verbose=False) | |||
|     for i, obs in enumerate(observations): | |||
|         img = Image.fromarray(obs) | |||
|         img.save(f"{testDir}/{i:003}.png") | |||
| 
 | |||
| ski_position_counter = {1: (Action.LEFT, 40), 2: (Action.LEFT, 35), 3: (Action.LEFT, 30), 4: (Action.LEFT, 10), 5: (Action.NOOP, 1), 6: (Action.RIGHT, 10), 7: (Action.RIGHT, 30), 8: (Action.RIGHT, 40) } | |||
| 
 | |||
| def run_single_test(ale, nn_wrapper, x,y,ski_position, velocity, duration=50): | |||
|     #print(f"Running Test from x: {x:04}, y: {y:04}, ski_position: {ski_position}", end="") | |||
|     testDir = f"{x}_{y}_{ski_position}_{velocity}" | |||
|     try: | |||
|         for i, r in enumerate(ramDICT[y]): | |||
|             ale.setRAM(i,r) | |||
|         ski_position_setting = ski_position_counter[ski_position] | |||
|         for i in range(0,ski_position_setting[1]): | |||
|             ale.act(ski_position_setting[0]) | |||
|             ale.setRAM(14,0) | |||
|             ale.setRAM(25,x) | |||
|         ale.setRAM(14,180) # TODO | |||
|     except Exception as e: | |||
|         print(e) | |||
|         logger.warn(f"Could not run test for x: {x}, y: {y}, ski_position: {ski_position}, velocity: {velocity}") | |||
|         return (Verdict.INCONCLUSIVE, 0) | |||
| 
 | |||
|     num_queries = 0 | |||
|     all_obs = list() | |||
|     speed_list = list() | |||
|     resized_obs = cv2.resize(ale.getScreenGrayscale(), (84,84), interpolation=cv2.INTER_AREA) | |||
|     for i in range(0,4): | |||
|         all_obs.append(resized_obs) | |||
|     for i in range(0,duration-4): | |||
|         resized_obs = cv2.resize(ale.getScreenGrayscale(), (84,84), interpolation=cv2.INTER_AREA) | |||
|         all_obs.append(resized_obs) | |||
|         if i % 4 == 0: | |||
|             stack_tensor = TensorDict({"obs": np.array(all_obs[-4:])}) | |||
|             action = nn_wrapper.query(stack_tensor) | |||
|             num_queries += 1 | |||
|             ale.act(input_to_action(str(action))) | |||
|         else: | |||
|             ale.act(input_to_action(str(action))) | |||
|         speed_list.append(ale.getRAM()[14]) | |||
|         if len(speed_list) > 15 and sum(speed_list[-6:-1]) == 0: | |||
|             #saveObservations(all_obs, Verdict.BAD, testDir) | |||
|             return (Verdict.BAD, num_queries) | |||
|     #saveObservations(all_obs, Verdict.GOOD, testDir) | |||
|     return (Verdict.GOOD, num_queries) | |||
| 
 | |||
| def skiPositionFormulaList(name): | |||
|     formulas = list() | |||
|     for i in range(1, num_ski_positions+1): | |||
|         formulas.append(f"\"{name}_{i}\"") | |||
|     return createBalancedDisjunction(formulas) | |||
| 
 | |||
| 
 | |||
| def computeStateRanking(mdp_file, iteration): | |||
|     logger.info("Computing state ranking") | |||
|     tic() | |||
|     prop =  f"filter(min, Pmin=? [ G !(\"Hit_Tree\" | \"Hit_Gate\" | {skiPositionFormulaList('Unsafe')}) ], (!\"S_Hit_Tree\" & !\"S_Hit_Gate\") | ({skiPositionFormulaList('Safe')} | {skiPositionFormulaList('Unsafe')}) );" | |||
|     prop += f"filter(max, Pmin=? [ G !(\"Hit_Tree\" | \"Hit_Gate\" | {skiPositionFormulaList('Unsafe')}) ], (!\"S_Hit_Tree\" & !\"S_Hit_Gate\") | ({skiPositionFormulaList('Safe')} | {skiPositionFormulaList('Unsafe')}) );" | |||
|     prop += f"filter(avg, Pmin=? [ G !(\"Hit_Tree\" | \"Hit_Gate\" | {skiPositionFormulaList('Unsafe')}) ], (!\"S_Hit_Tree\" & !\"S_Hit_Gate\") | ({skiPositionFormulaList('Safe')} | {skiPositionFormulaList('Unsafe')}) );" | |||
|     prop += f"filter(min, Pmax=? [ G !(\"Hit_Tree\" | \"Hit_Gate\" | {skiPositionFormulaList('Unsafe')}) ], (!\"S_Hit_Tree\" & !\"S_Hit_Gate\") | ({skiPositionFormulaList('Safe')} | {skiPositionFormulaList('Unsafe')}) );" | |||
|     prop += f"filter(max, Pmax=? [ G !(\"Hit_Tree\" | \"Hit_Gate\" | {skiPositionFormulaList('Unsafe')}) ], (!\"S_Hit_Tree\" & !\"S_Hit_Gate\") | ({skiPositionFormulaList('Safe')} | {skiPositionFormulaList('Unsafe')}) );" | |||
|     prop += f"filter(avg, Pmax=? [ G !(\"Hit_Tree\" | \"Hit_Gate\" | {skiPositionFormulaList('Unsafe')}) ], (!\"S_Hit_Tree\" & !\"S_Hit_Gate\") | ({skiPositionFormulaList('Safe')} | {skiPositionFormulaList('Unsafe')}) );" | |||
|     prop += 'Rmax=? [C <= 200]' | |||
|     results = list() | |||
|     try: | |||
|         command = f"{tempest_binary} --prism {mdp_file} --buildchoicelab --buildstateval --build-all-labels --prop '{prop}'" | |||
|         output = subprocess.check_output(command, shell=True).decode("utf-8").split('\n') | |||
|         num_states = 0 | |||
|         for line in output: | |||
|             #print(line) | |||
|             if "States:" in line: | |||
|                 num_states = int(line.split(" ")[-1]) | |||
|             if "Result" in line and not len(results) >= 6: | |||
|                 range_value = re.search(r"(.*:).*\[(-?\d+\.?\d*), (-?\d+\.?\d*)\].*", line) | |||
|                 if range_value: | |||
|                     results.append(float(range_value.group(2))) | |||
|                     results.append(float(range_value.group(3))) | |||
|                 else: | |||
|                     value = re.search(r"(.*:)(.*)", line) | |||
|                     results.append(float(value.group(2))) | |||
|         exec(f"mv action_ranking action_ranking_{iteration:03}") | |||
|     except subprocess.CalledProcessError as e: | |||
|         # todo die gracefully if ranking is uniform | |||
|         print(e.output) | |||
|     logger.info(f"Computing state ranking - DONE: took {toc()} seconds") | |||
|     return TestResult(*tuple(results),0,0,0,0,0,0,0), num_states | |||
| 
 | |||
| def fillStateRanking(file_name, match=""): | |||
|     logger.info(f"Parsing state ranking, {file_name}") | |||
|     tic() | |||
|     state_ranking = dict() | |||
|     try: | |||
|         with open(file_name, "r") as f: | |||
|             file_content = f.readlines() | |||
|         for line in file_content: | |||
|             if not "move=0" in line: continue | |||
|             ranking_value = float(re.search(r"Value:([+-]?(\d*\.\d+)|\d+)", line)[0].replace("Value:","")) | |||
|             if ranking_value <= 0.1: | |||
|                 continue | |||
|             stateMapping = convert(re.findall(r"([a-zA-Z_]*[a-zA-Z])=(\d+)?", line)) | |||
|             choices = convert(re.findall(r"[a-zA-Z_]*(left|right|noop)[a-zA-Z_]*:(-?\d+\.?\d*)", line)) | |||
|             choices = {key:float(value) for (key,value) in choices.items()} | |||
|             state = State(int(stateMapping["x"]), int(stateMapping["y"]), int(stateMapping["ski_position"]), int(stateMapping["velocity"])//2) | |||
|             value = StateValue(ranking_value, choices) | |||
|             state_ranking[state] = value | |||
|         logger.info(f"Parsing state ranking - DONE: took {toc()} seconds") | |||
|         return state_ranking | |||
|     except EnvironmentError: | |||
|         print("Ranking file not available. Exiting.") | |||
|         toc() | |||
|         sys.exit(-1) | |||
|     except: | |||
|         toc() | |||
| 
 | |||
| def createDisjunction(formulas): | |||
|     return " | ".join(formulas) | |||
| 
 | |||
| def statesFormulaTrimmed(states, name): | |||
|     #states = [(s[0].x,s[0].y, s[0].ski_position) for s in cluster] | |||
|     skiPositionGroup = defaultdict(list) | |||
|     for item in states: | |||
|         skiPositionGroup[item[2]].append(item) | |||
| 
 | |||
|     formulas = list() | |||
|     for skiPosition, skiPos_group in skiPositionGroup.items(): | |||
|         formula = f"formula {name}_{skiPosition} = ( ski_position={skiPosition} & " | |||
|         #print(f"{name} ski_pos:{skiPosition}") | |||
|         velocityGroup = defaultdict(list) | |||
|         velocityFormulas = list() | |||
|         for item in skiPos_group: | |||
|             velocityGroup[item[3]].append(item) | |||
|         for velocity, velocity_group in velocityGroup.items(): | |||
|             #print(f"\tvel:{velocity}") | |||
|             formulasPerSkiPosition = list() | |||
|             yPosGroup = defaultdict(list) | |||
|             yFormulas = list() | |||
|             for item in velocity_group: | |||
|                 yPosGroup[item[1]].append(item) | |||
|             for y, y_group in yPosGroup.items(): | |||
|                 #print(f"\t\ty:{y}") | |||
|                 sorted_y_group = sorted(y_group, key=lambda s: s[0]) | |||
|                 current_x_min = sorted_y_group[0][0] | |||
|                 current_x = sorted_y_group[0][0] | |||
|                 x_ranges = list() | |||
|                 for state in sorted_y_group[1:-1]: | |||
|                     if state[0] - current_x == 1: | |||
|                         current_x = state[0] | |||
|                     else: | |||
|                         x_ranges.append(f" ({current_x_min}<=x&x<={current_x})") | |||
|                         current_x_min = state[0] | |||
|                         current_x = state[0] | |||
|                 x_ranges.append(f" {current_x_min}<=x&x<={sorted_y_group[-1][0]}") | |||
|                 yFormulas.append(f" (y={y} & {createBalancedDisjunction(x_ranges)})") | |||
|                 #x_ranges.clear() | |||
| 
 | |||
|             #velocityFormulas.append(f"(velocity={velocity} & {createBalancedDisjunction(yFormulas)})") | |||
|             velocityFormulas.append(f"({createBalancedDisjunction(yFormulas)})") | |||
|             #yFormulas.clear() | |||
|         formula += createBalancedDisjunction(velocityFormulas) + ");" | |||
|         #velocityFormulas.clear() | |||
|         formulas.append(formula) | |||
|     for i in range(1, num_ski_positions+1): | |||
|         if i in skiPositionGroup: | |||
|             continue | |||
|         formulas.append(f"formula {name}_{i} = false;") | |||
|     return "\n".join(formulas) + "\n" | |||
| 
 | |||
| # https://stackoverflow.com/questions/5389507/iterating-over-every-two-elements-in-a-list | |||
| def pairwise(iterable): | |||
|     "s -> (s0, s1), (s2, s3), (s4, s5), ..." | |||
|     a = iter(iterable) | |||
|     return zip(a, a) | |||
| 
 | |||
| def createBalancedDisjunction(formulas): | |||
|     if len(formulas) == 0: | |||
|         return "false" | |||
|     while len(formulas) > 1: | |||
|         formulas_tmp = [f"({f} | {g})"  for f,g in pairwise(formulas)] | |||
|         if len(formulas) % 2 == 1: | |||
|             formulas_tmp.append(formulas[-1]) | |||
|         formulas = formulas_tmp | |||
|     return " ".join(formulas) | |||
| 
 | |||
| def updatePrismFile(newFile, iteration, safeStates, unsafeStates): | |||
|     logger.info("Creating next prism file") | |||
|     tic() | |||
|     initFile = f"{newFile}_no_formulas.prism" | |||
|     newFile = f"{newFile}_{iteration:03}.prism" | |||
|     exec(f"cp {initFile} {newFile}", verbose=False) | |||
|     with open(newFile, "a") as prism: | |||
|         prism.write(statesFormulaTrimmed(safeStates, "Safe")) | |||
|         prism.write(statesFormulaTrimmed(unsafeStates, "Unsafe")) | |||
|         for i in range(1,num_ski_positions+1): | |||
|             prism.write(f"label \"Safe_{i}\" = Safe_{i};\n") | |||
|             prism.write(f"label \"Unsafe_{i}\" = Unsafe_{i};\n") | |||
| 
 | |||
|     logger.info(f"Creating next prism file - DONE: took {toc()} seconds") | |||
| 
 | |||
| 
 | |||
| ale = ALEInterface() | |||
| 
 | |||
| 
 | |||
| #if SDL_SUPPORT: | |||
| #    ale.setBool("sound", True) | |||
| #    ale.setBool("display_screen", True) | |||
| 
 | |||
| # Load the ROM file | |||
| ale.loadROM(rom_file) | |||
| 
 | |||
| with open('all_positions_v2.pickle', 'rb') as handle: | |||
|     ramDICT = pickle.load(handle) | |||
| y_ram_setting = 60 | |||
| x = 70 | |||
| 
 | |||
| 
 | |||
| nn_wrapper = SampleFactoryNNQueryWrapper() | |||
| 
 | |||
| experiment_id = int(time.time()) | |||
| init_mdp = "velocity_safety" | |||
| exec(f"mkdir -p images/testing_{experiment_id}", verbose=False) | |||
| 
 | |||
| 
 | |||
| imagesDir = f"images/testing_{experiment_id}" | |||
| 
 | |||
| def drawOntoSkiPosImage(states, color, target_prefix="cluster_", alpha_factor=1.0, markerSize=1, drawCircle=False): | |||
|     #markerList = {ski_position:list() for ski_position in range(1,num_ski_positions + 1)} | |||
|     markerList = {(ski_position, velocity):list() for velocity in range(0, num_velocities) for ski_position in range(1,num_ski_positions + 1)} | |||
|     images = dict() | |||
|     mergedImages = dict() | |||
|     for ski_position in range(1, num_ski_positions + 1): | |||
|         for velocity in range(0,num_velocities): | |||
|             images[(ski_position, velocity)] = cv2.imread(f"{imagesDir}/{target_prefix}_{ski_position:02}_{velocity:02}_individual.png") | |||
|         mergedImages[ski_position] = cv2.imread(f"{imagesDir}/{target_prefix}_{ski_position:02}_individual.png") | |||
|     for state in states: | |||
|         s = state[0] | |||
|         marker = [color, alpha_factor * state[1].ranking, (s.x-markerSize, s.y-markerSize), (s.x+markerSize, s.y+markerSize)] | |||
|         markerList[(s.ski_position, s.velocity)].append(marker) | |||
|     for (pos, vel), marker in markerList.items(): | |||
|         if len(marker) == 0: continue | |||
|         if drawCircle: | |||
|             for m in marker: | |||
|                 images[(pos,vel)] = cv2.circle(images[(pos,vel)], m[2], 1, m[0], thickness=-1) | |||
|                 mergedImages[pos] = cv2.circle(mergedImages[pos], m[2], 1, m[0], thickness=-1) | |||
|         else: | |||
|             for m in marker: | |||
|                 images[(pos,vel)] = cv2.rectangle(images[(pos,vel)], m[2], m[3], m[0], cv2.FILLED) | |||
|                 mergedImages[pos] = cv2.rectangle(mergedImages[pos], m[2], m[3], m[0], cv2.FILLED) | |||
|     for (ski_position, velocity), image in images.items(): | |||
|         cv2.imwrite(f"{imagesDir}/{target_prefix}_{ski_position:02}_{velocity:02}_individual.png", image) | |||
|     for ski_position, image in mergedImages.items(): | |||
|         cv2.imwrite(f"{imagesDir}/{target_prefix}_{ski_position:02}_individual.png", image) | |||
| 
 | |||
| 
 | |||
| def concatImages(prefix, iteration): | |||
|     logger.info(f"Concatenating images") | |||
|     images = [f"{imagesDir}/{prefix}_{pos:02}_{vel:02}_individual.png" for vel in range(0,num_velocities) for pos in range(1,num_ski_positions+1)] | |||
|     mergedImages = [f"{imagesDir}/{prefix}_{pos:02}_individual.png" for pos in range(1,num_ski_positions+1)] | |||
|     for vel in range(0, num_velocities): | |||
|         for pos in range(1, num_ski_positions + 1): | |||
|             command =  f"convert {imagesDir}/{prefix}_{pos:02}_{vel:02}_individual.png " | |||
|             command += f"-pointsize 10 -gravity NorthEast -annotate +8+0 'p{pos:02}v{vel:02}' " | |||
|             command += f"{imagesDir}/{prefix}_{pos:02}_{vel:02}_individual.png" | |||
|             exec(command, verbose=False) | |||
|     exec(f"montage {' '.join(images)} -geometry +0+0 -tile 8x9 {imagesDir}/{prefix}_{iteration:03}.png", verbose=False) | |||
|     exec(f"montage {' '.join(mergedImages)} -geometry +0+0 -tile 8x9 {imagesDir}/{prefix}_{iteration:03}_merged.png", verbose=False) | |||
|     #exec(f"sxiv {imagesDir}/{prefix}_{iteration}.png&", verbose=False) | |||
|     logger.info(f"Concatenating images - DONE") | |||
| 
 | |||
| def drawStatesOntoTiledImage(states, color, target, source="images/1_full_scaled_down.png", alpha_factor=1.0): | |||
|     """ | |||
|     Useful to draw a set of states, e.g. a single cluster | |||
|     TODO | |||
|     markerList = {1: list(), 2:list(), 3:list(), 4:list(), 5:list(), 6:list(), 7:list(), 8:list()} | |||
|     logger.info(f"Drawing {len(states)} states onto {target}") | |||
|     tic() | |||
|     for state in states: | |||
|         s = state[0] | |||
|         marker = f"-fill 'rgba({color}, {alpha_factor * state[1].ranking})' -draw 'rectangle {s.x-markerSize},{s.y-markerSize} {s.x+markerSize},{s.y+markerSize} '" | |||
|         markerList[s.ski_position].append(marker) | |||
|     for pos, marker in markerList.items(): | |||
|         command = f"convert {source} {' '.join(marker)} {imagesDir}/{target}_{pos:02}_individual.png" | |||
|         exec(command, verbose=False) | |||
|     exec(f"montage {imagesDir}/{target}_*_individual.png -geometry +0+0 -tile x1 {imagesDir}/{target}.png", verbose=False) | |||
|     logger.info(f"Drawing {len(states)} states onto {target} - Done: took {toc()} seconds") | |||
|     """ | |||
| 
 | |||
| def drawClusters(clusterDict, target, iteration, alpha_factor=1.0): | |||
|     logger.info(f"Drawing {len(clusterDict)} clusters") | |||
|     tic() | |||
|     for _, clusterStates in clusterDict.items(): | |||
|         color = (np.random.choice(range(256)), np.random.choice(range(256)), np.random.choice(range(256))) | |||
|         color = (int(color[0]), int(color[1]), int(color[2])) | |||
|         drawOntoSkiPosImage(clusterStates, color, target, alpha_factor=alpha_factor) | |||
|     concatImages(target, iteration) | |||
|     logger.info(f"Drawing {len(clusterDict)} clusters - DONE: took {toc()} seconds") | |||
| 
 | |||
| def drawResult(clusterDict, target, iteration, drawnCluster=set()): | |||
|     logger.info(f"Drawing {len(clusterDict)} results") | |||
|     tic() | |||
|     for id, (clusterStates, result) in clusterDict.items(): | |||
|         if id in drawnCluster: continue | |||
|         # opencv wants BGR | |||
|         color = (100,100,100) | |||
|         if result == Verdict.GOOD: | |||
|             color = (0,200,0) | |||
|         elif result == Verdict.BAD: | |||
|             color = (0,0,200) | |||
|         drawOntoSkiPosImage(clusterStates, color, target, alpha_factor=0.7) | |||
|     logger.info(f"Drawing {len(clusterDict)} results - DONE: took {toc()} seconds") | |||
| 
 | |||
| def _init_logger(): | |||
|     logger = logging.getLogger('main') | |||
|     logger.setLevel(logging.INFO) | |||
|     handler = logging.StreamHandler(sys.stdout) | |||
|     formatter = logging.Formatter(       '[%(levelname)s] %(module)s - %(message)s') | |||
|     handler.setFormatter(formatter) | |||
|     logger.addHandler(handler) | |||
| 
 | |||
| def clusterImportantStates(ranking, iteration): | |||
|     logger.info(f"Starting to cluster {len(ranking)} states into clusters") | |||
|     tic() | |||
|     states = [[s[0].x,s[0].y, s[0].ski_position * 20, s[0].velocity * 20, s[1].ranking] for s in ranking] | |||
|     #states = [[s[0].x,s[0].y, s[0].ski_position * 30, s[1].ranking] for s in ranking] | |||
|     kmeans = KMeans(len(states) // 15, random_state=0, n_init="auto").fit(states) | |||
|     #dbscan = DBSCAN(eps=5).fit(states) | |||
|     #labels = dbscan.labels_ | |||
|     labels = kmeans.labels_ | |||
|     n_clusters = len(set(labels)) - (1 if -1 in labels else 0) | |||
|     logger.info(f"Starting to cluster {len(ranking)} states into clusters - DONE: took {toc()} seconds with {n_clusters} cluster") | |||
|     clusterDict = {i : list() for i in range(0,n_clusters)} | |||
|     strayStates = list() | |||
|     for i, state in enumerate(ranking): | |||
|         if labels[i] == -1: | |||
|             clusterDict[n_clusters + len(strayStates) + 1] = list() | |||
|             clusterDict[n_clusters + len(strayStates) + 1].append(state) | |||
|             strayStates.append(state) | |||
|             continue | |||
|         clusterDict[labels[i]].append(state) | |||
|     if len(strayStates) > 0: logger.warning(f"{len(strayStates)} stray states with label -1") | |||
|     #drawClusters(clusterDict, f"clusters", iteration) | |||
|     return clusterDict | |||
| 
 | |||
| 
 | |||
| def run_experiment(factor_tests_per_cluster): | |||
|     logger.info("Starting") | |||
|     num_queries = 0 | |||
| 
 | |||
|     source = "images/1_full_scaled_down.png" | |||
|     for ski_position in range(1, num_ski_positions + 1): | |||
|         for velocity in range(0,num_velocities): | |||
|             exec(f"cp {source} {imagesDir}/clusters_{ski_position:02}_{velocity:02}_individual.png", verbose=False) | |||
|             exec(f"cp {source} {imagesDir}/result_{ski_position:02}_{velocity:02}_individual.png", verbose=False) | |||
|         exec(f"cp {source} {imagesDir}/clusters_{ski_position:02}_individual.png", verbose=False) | |||
|         exec(f"cp {source} {imagesDir}/result_{ski_position:02}_individual.png", verbose=False) | |||
| 
 | |||
|     goodVerdicts = 0 | |||
|     badVerdicts = 0 | |||
|     goodVerdictTestCases = list() | |||
|     badVerdictTestCases = list() | |||
|     safeClusters = 0 | |||
|     unsafeClusters = 0 | |||
|     safeStates = set() | |||
|     unsafeStates = set() | |||
|     iteration = 0 | |||
|     results = list() | |||
| 
 | |||
|     eps = 0.1 | |||
|     updatePrismFile(init_mdp, iteration, set(), set()) | |||
|     #modelCheckingResult, numStates = TestResult(0,0,0,0,0,0,0,0,0,0,0,0,0), 10 | |||
|     modelCheckingResult, numStates = computeStateRanking(f"{init_mdp}_000.prism", iteration) | |||
|     results.append(modelCheckingResult) | |||
|     ranking = fillStateRanking(f"action_ranking_000") | |||
| 
 | |||
|     sorted_ranking = sorted( (x for x in ranking.items() if x[1].ranking > 0.1), key=lambda x: x[1].ranking) | |||
|     try: | |||
|         clusters = clusterImportantStates(sorted_ranking, iteration) | |||
|     except Exception as e: | |||
|         print(e) | |||
|         sys.exit(-1) | |||
| 
 | |||
|     clusterResult = dict() | |||
|     logger.info(f"Running tests") | |||
|     tic() | |||
|     num_cluster_tested = 0 | |||
|     iteration = 0 | |||
|     drawnCluster = set() | |||
|     for id, cluster in clusters.items(): | |||
|         num_tests = int(factor_tests_per_cluster * len(cluster)) | |||
|         if num_tests == 0: num_tests = 1 | |||
|         logger.info(f"Testing {num_tests} states (from {len(cluster)} states) from cluster {id}") | |||
|         randomStates = np.random.choice(len(cluster), num_tests, replace=False) | |||
|         randomStates = [cluster[i] for i in randomStates] | |||
| 
 | |||
|         verdictGood = True | |||
|         for state in randomStates: | |||
|             x = state[0].x | |||
|             y = state[0].y | |||
|             ski_pos = state[0].ski_position | |||
|             velocity = state[0].velocity | |||
|             result, num_queries_this_test_case = run_single_test(ale,nn_wrapper,x,y,ski_pos, velocity, duration=50) | |||
|             num_queries += num_queries_this_test_case | |||
|             if result == Verdict.BAD: | |||
|                 clusterResult[id] = (cluster, Verdict.BAD) | |||
|                 verdictGood = False | |||
|                 unsafeStates.update([(s[0].x,s[0].y, s[0].ski_position, s[0].velocity) for s in cluster]) | |||
|                 badVerdicts += 1 | |||
|                 badVerdictTestCases.append(state) | |||
| 
 | |||
|             elif result == Verdict.GOOD: | |||
|                 goodVerdicts += 1 | |||
|                 goodVerdictTestCases.append(state) | |||
|         if verdictGood: | |||
|             clusterResult[id] = (cluster, Verdict.GOOD) | |||
|             safeClusters += 1 | |||
|             safeStates.update([(s[0].x,s[0].y, s[0].ski_position, s[0].velocity) for s in cluster]) | |||
|         else: | |||
|             unsafeClusters += 1 | |||
|         results[-1].safe_states = len(safeStates) | |||
|         results[-1].unsafe_states = len(unsafeStates) | |||
|         results[-1].policy_queries = num_queries | |||
|         results[-1].safe_cluster = safeClusters | |||
|         results[-1].unsafe_cluster = unsafeClusters | |||
|         results[-1].good_verdicts = goodVerdicts | |||
|         results[-1].bad_verdicts = badVerdicts | |||
|         num_cluster_tested += 1 | |||
|         if num_cluster_tested % (len(clusters)//20) == 0: | |||
|             iteration += 1 | |||
|             logger.info(f"Tested Cluster: {num_cluster_tested:03}\tSafe Cluster States : {len(safeStates)}({safeClusters}/{len(clusters)})\tUnsafe Cluster States:{len(unsafeStates)}({unsafeClusters}/{len(clusters)})\tGood Test Cases:{goodVerdicts}\tFailing Test Cases:{badVerdicts}\t{len(safeStates)/len(unsafeStates)} - {goodVerdicts/badVerdicts}") | |||
|             drawResult(clusterResult, "result", iteration, drawnCluster) | |||
|             drawOntoSkiPosImage(goodVerdictTestCases, (10,255,50), "result", alpha_factor=0.7, markerSize=0, drawCircle=True) | |||
|             drawOntoSkiPosImage(badVerdictTestCases, (0,0,0), "result", alpha_factor=0.7, markerSize=0, drawCircle=True) | |||
|             concatImages("result", iteration) | |||
|             drawnCluster.update(clusterResult.keys()) | |||
|             #updatePrismFile(init_mdp, iteration, safeStates, unsafeStates) | |||
|             #modelCheckingResult, numStates = computeStateRanking(f"{init_mdp}_{iteration:03}.prism", iteration) | |||
|             results.append(deepcopy(modelCheckingResult)) | |||
|             logger.info(f"Model Checking Result: {modelCheckingResult}") | |||
|             # Account for self-loop states after first iteration | |||
|             if iteration > 0: | |||
|                 results[-1].init_check_pes_avg = 1/(numStates+len(safeStates)+len(unsafeStates)) * (results[-1].init_check_pes_avg*numStates + 1.0*results[-2].unsafe_states + 0.0*results[-2].safe_states) | |||
|                 results[-1].init_check_opt_avg = 1/(numStates+len(safeStates)+len(unsafeStates)) * (results[-1].init_check_opt_avg*numStates + 0.0*results[-2].unsafe_states + 1.0*results[-2].safe_states) | |||
|             print(TestResult.csv_header()) | |||
|             for result in results[:-1]: | |||
|                 print(result.csv()) | |||
| 
 | |||
| 
 | |||
|     with open(f"data_new_method_{factor_tests_per_cluster}", "w") as f: | |||
|         f.write(TestResult.csv_header() + "\n") | |||
|         for result in results[:-1]: | |||
|             f.write(result.csv() + "\n") | |||
| 
 | |||
| 
 | |||
| _init_logger() | |||
| logger = logging.getLogger('main') | |||
| if __name__ == '__main__': | |||
|     for factor_tests_per_cluster in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: | |||
|         run_experiment(factor_tests_per_cluster) | |||
						Write
						Preview
					
					
					Loading…
					
					Cancel
						Save
					
		Reference in new issue