A simple students project implementing Dinic's Algorithm to compute the max flow/min cut of a network.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

366 lines
14 KiB

#include <algorithm>
#include <iostream>
#include <queue>
#include <sstream>
#include <climits>
#include "Graph.h"
#include "util/GraphParser.h"
namespace data {
Graph::Graph(bool stdout_output, bool file_output, std::string output_filename, bool verbose_max_flow, bool min_cut, int verbosity)
: m_file_output(file_output), m_output_file_name(output_filename), m_verbose_max_flow(verbose_max_flow), m_min_cut(min_cut), m_verbosity(verbosity) {
}
void Graph::parseFromString(const std::string &graph_string) {
parser::parseString(graph_string, m_arc_list, m_vertices, m_source_id, m_sink_id, m_num_vertices, m_num_arcs);
initMatrices();
initOstream();
}
void Graph::parseFromFile(const std::string &graph_file) {
if(graph_file == m_output_file_name) {
throw std::runtime_error("Input graph file name and output file name are the same. Will not overwrite. Exiting...");
}
parser::parseFile(graph_file, m_arc_list, m_vertices, m_source_id, m_sink_id, m_num_vertices, m_num_arcs);
initMatrices();
initOstream();
}
void Graph::initMatrices() {
m_flow.resize(m_num_vertices, std::vector<Capacity>(m_num_vertices, 0));
m_capapcities.resize(m_num_vertices, std::vector<Capacity>(m_num_vertices, 0));
for(auto const &arc : m_arc_list) {
m_capapcities.at(arc.start - 1).at(arc.end - 1) += arc.capacity;
}
m_network = m_capapcities;
}
void Graph::initOstream() {
if(m_file_output) {
m_ofstream = new std::ofstream(m_output_file_name);
} else {
m_ofstream = &std::cout;
}
}
int Graph::maxFlowDinic() {
std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
printInformation();
do {
constructLevelGraph();
} while(findAugmentingPaths() != NO_AUGMENTING_PATH_FOUND);
*m_ofstream << "Found max flow |x| = " << m_max_flow << "\n";
if(m_verbose_max_flow) printMaxFlowInformation();
if(m_min_cut) printMinCut();
if(m_verbosity >= 1) printComputationStatistics(start, std::chrono::steady_clock::now());
return m_max_flow;
}
int Graph::findAugmentingPaths() {
auto m_sink = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return v.getID() == m_sink_id; });
if(m_sink->getLevel() == UNDEF_LEVEL) {
return NO_AUGMENTING_PATH_FOUND;
}
for(auto &v : m_vertices) {
v.setVisited(false);
}
auto m_source = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return v.getID() == m_source_id; });
std::vector<Vertex> path{*m_source};
buildPath(path);
return 0;
}
void Graph::buildPath(std::vector<Vertex> &current_path) {
Vertex head = current_path.back();
if(head.getID() == m_sink_id) {
computeFlowForPath(current_path);
}
for(auto const& arc : head.getOutgoingArcs()) {
if(m_capapcities.at(arc.start - 1).at(arc.end - 1) <= 0) continue;
auto it = std::find_if(m_vertices.begin(), m_vertices.end(), [&arc] (const Vertex &v) { return v.getID() == arc.end; });
if(head.getLevel() + 1 != it->getLevel()) continue;
if(it != m_vertices.end()) {
current_path.push_back(*it);
buildPath(current_path);
}
current_path.pop_back();
}
if(m_verbosity >= 1) m_num_build_path_calls++;
}
void Graph::computeFlowForPath(const std::vector<Vertex> &current_path) {
std::vector<Capacity> path_capacities;
for(uint i = 0; i < current_path.size() - 1; i++) {
path_capacities.push_back(m_capapcities.at(current_path.at(i).getID() - 1).at(current_path.at(i + 1).getID() - 1));
}
Capacity flow = *std::min_element(path_capacities.begin(), path_capacities.end());
m_max_flow += flow;
for(uint i = 0; i < current_path.size() - 1; i++) {
m_capapcities.at(current_path.at(i).getID() - 1).at(current_path.at(i + 1).getID() - 1) -= flow;
m_flow.at(current_path.at(i).getID() - 1).at(current_path.at(i + 1).getID() - 1) += flow;
}
if(m_verbosity >= 1) m_num_paths++;
if(m_verbosity >= 2) {
std::stringstream path;
path << std::to_string(current_path.front().getID());
for(uint i = 1; i < current_path.size(); i++) {
path << " > " << current_path.at(i).getID();
}
path << " | flow = " << flow;
m_augmenting_paths.push_back(path.str());
}
}
void Graph::constructLevelGraph() {
std::queue<Vertex> q;
for(auto &v : m_vertices) {
v.setLevel(UNDEF_LEVEL);
}
auto m_source = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return (v.getID() == m_source_id); });
m_source->setLevel(0);
q.push(*m_source);
while(!q.empty()) {
Vertex current_vertex = q.front();
int current_level = current_vertex.getLevel();
q.pop();
// restructure this to use matrix
for(auto const &arc : current_vertex.getOutgoingArcs()) {
if(m_capapcities.at(arc.start - 1).at(arc.end - 1) <= 0) continue;
auto it = std::find_if(m_vertices.begin(), m_vertices.end(), [&arc] (const Vertex &v) { return (v.getID() == arc.end) && !v.hasDefinedLevel(); });
if(it != m_vertices.end()) {
it->setLevel(current_level + 1);
q.push(*it);
}
}
}
if(m_verbosity >= 1) m_num_level_graphs_built++;
}
void Graph::hasUniqueMaxFlow() {
*m_ofstream << "\nChecking uniqueness of maximum flow:\n";
CapacityMatrix residualGraph = m_capapcities;
for(uint row = 0; row < m_flow.size(); row++) {
for(uint i = 0; i < m_flow.at(0).size(); i++) {
residualGraph.at(i).at(row) += m_flow.at(row).at(i);
}
}
int visited[m_num_vertices];
std::stack<int> *recursive_stack = new std::stack<int>();
bool found_cycle = false;
for(uint i = 0; i < m_num_vertices; i++){
visited[i] = NOT_PROCESSED;
}
for(uint i = 0; i < m_num_vertices; i++){
if(visited[i] == NOT_PROCESSED) {
visited[i] = ON_STACK;
recursive_stack = new std::stack<int>();
recursive_stack->push(i);
isResidualGraphCyclic(residualGraph, visited, INVALID_VERTEX, recursive_stack, found_cycle);
}
}
if(!found_cycle) *m_ofstream << "The max flow is unique!\n";
}
void Graph::isResidualGraphCyclic(const CapacityMatrix &residual_graph, int *visited, const int previous, std::stack<int> *recursive_stack, bool &found_cycle) {
int top = recursive_stack->top();
for(uint next = 0; next < residual_graph.at(top).size(); next++) {
if(next == previous) continue;
if(residual_graph.at(top).at(next) == 0) continue;
//std::cout << "prev, top, next, capacity: " << previous +1 << ", " << top +1 << ", " << next+1 << ", " << residual_graph.at(top).at(next) <<std::endl;
if(visited[next] == NOT_PROCESSED || visited[next] == PROCESSED) {
recursive_stack->push(next);
visited[next] = ON_STACK;
isResidualGraphCyclic(residual_graph, visited, top, recursive_stack, found_cycle);
} else if(visited[next] == ON_STACK) {
if(recursive_stack->size() >= 3) {
found_cycle = true;
printCycle(residual_graph, recursive_stack);
}
}
}
visited[top] = PROCESSED;
recursive_stack->pop();
}
void Graph::printCycle(const CapacityMatrix residual_matrix, std::stack<int> *stack) {
int first, previous, current;
std::stack<int> print_stack;
while(stack->size() != 0) {
print_stack.push(stack->top());
stack->pop();
}
previous = print_stack.top();
first = previous;
print_stack.pop();
*m_ofstream << previous + 1;
int min_capacity = INT_MAX;
while(print_stack.size() != 0) {
current = print_stack.top();
*m_ofstream << " -> " << current + 1;
if(residual_matrix.at(previous).at(current) < min_capacity) min_capacity = residual_matrix.at(previous).at(current);
print_stack.pop();
stack->push(current);
previous = current;
}
*m_ofstream << " -> " << first + 1;
if(residual_matrix.at(current).at(first) < min_capacity) min_capacity = residual_matrix.at(current).at(first);
*m_ofstream << ", where " << min_capacity << " unit";
if(min_capacity > 1) *m_ofstream << "s";
*m_ofstream << " of flow could be shifted." << std::endl;
}
void Graph::hasUniqueMinCut() {
*m_ofstream << "\nChecking uniqueness of minimum cut:\n";
std::vector<Arc> *cut_edges = new std::vector<Arc>();
computeMinCut(nullptr, nullptr, cut_edges);
bool found_another_min_cut = false;
for(auto const &arc : *cut_edges) {
Graph augmented_network = *this;
augmented_network.incrementArcCapacity(arc.start - 1, arc.end - 1);
augmented_network.resetNetwork();
augmented_network.disableOutput();
int augmented_max_flow = augmented_network.maxFlowDinic();
augmented_network.enableOutput();
if(augmented_max_flow == m_max_flow) {
found_another_min_cut = true;
*m_ofstream << "Found another minimum cut after incrementing (" << arc.start << "," << arc.end << ") with a flow value of " << augmented_max_flow << "." << std::endl;
augmented_network.printMinCut();
//augmented_network.hasUniqueMinCut();
}
}
if(!found_another_min_cut) {
*m_ofstream << "The minimum cut is unique!\n";
}
}
void Graph::printInformation() const {
auto m_source = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return (v.getID() == m_source_id); });
auto m_sink = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return (v.getID() == m_sink_id); });
*m_ofstream << "#Vertices: " << m_num_vertices << std::endl;
*m_ofstream << "#Arc: " << m_num_arcs << std::endl;
*m_ofstream << "Source: " << m_source->getID() << ", Sink: " << m_sink->getID() << std::endl;
*m_ofstream << "Vertices: ";
bool first = true;
for(auto const& v : m_vertices) {
if(first) first = false;
else *m_ofstream << ", ";
*m_ofstream << v.getID();
}
*m_ofstream << std::endl;
for(auto const& a : m_arc_list) {
*m_ofstream << " " << a.start << " -> " << a.end << " capacity = " << a.capacity << std::endl;
}
*m_ofstream << std::endl;
}
void Graph::printMaxFlowInformation() const {
*m_ofstream << "Max Flow per arc:\n";
for(auto const &arc : m_arc_list) {
*m_ofstream << " " << arc.start << " -> " << arc.end << " flow = " << m_flow.at(arc.start - 1 ).at(arc.end - 1) << "/" << arc.capacity << "\n";
}
}
void Graph::computeMinCut(std::vector<Vertex> *source_vertices, std::vector<Vertex> *sink_vertices, std::vector<Arc> *cut_edges) const {
if(!source_vertices) source_vertices = new std::vector<Vertex>();
if(!sink_vertices) sink_vertices = new std::vector<Vertex>();
for(auto const &vertex : m_vertices) {
if(vertex.getLevel() != UNDEF_LEVEL) {
source_vertices->push_back(vertex.getID());
} else {
sink_vertices->push_back(vertex.getID());
}
}
if(cut_edges) {
for(auto const source : *source_vertices) {
for(auto const sink : *sink_vertices) {
int capacity = m_network.at(source.getID() - 1).at(sink.getID() - 1);
if(capacity > 0) {
cut_edges->push_back({source.getID(), sink.getID(), capacity, capacity, 0});
}
}
}
}
}
void Graph::printMinCut() const {
std::vector<Arc> *arcs = new std::vector<Arc>();
std::vector<Vertex> *source_vertices = new std::vector<Vertex>();
std::vector<Vertex> *sink_vertices = new std::vector<Vertex>();
computeMinCut(source_vertices, sink_vertices, arcs);
std::vector<std::string> min_cut, complement;
for(auto const &vertex : *source_vertices) {
min_cut.push_back(std::to_string(vertex.getID()));
}
for(auto const &vertex : *sink_vertices) {
complement.push_back(std::to_string(vertex.getID()));
}
*m_ofstream << "Min Cut X: {";
bool first = true;
for(auto const &v : min_cut) {
if(first) first = false;
else *m_ofstream << ", ";
*m_ofstream << v;
} *m_ofstream << "}\nComplement(X): {";
first = true;
for(auto const &v : complement) {
if(first) first = false;
else *m_ofstream << ", ";
*m_ofstream << v;
} *m_ofstream << "}\n";
}
void Graph::printComputationStatistics(const std::chrono::steady_clock::time_point &start, const std::chrono::steady_clock::time_point &end) const {
*m_ofstream << "Elapsed time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms (" << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << "µs).\n";
*m_ofstream << "Computation Statistics:\n";
*m_ofstream << " #level graphs built: " << m_num_level_graphs_built << "\n";
*m_ofstream << " #augmenting paths computed: " << m_num_paths << "\n";
if(m_verbosity >= 2) {
for(auto const &path : m_augmenting_paths) *m_ofstream << " " << path << "\n";
}
*m_ofstream << " #recursive buildPath calls: " << m_num_build_path_calls << "\n";
}
void Graph::incrementArcCapacity(const int source, const int sink) {
m_network.at(source).at(sink)++;
}
void Graph::resetNetwork() {
m_max_flow = 0;
m_capapcities = m_network;
}
void Graph::disableOutput() {
m_ofstream->setstate(std::ios_base::badbit);
}
void Graph::enableOutput() {
m_ofstream->clear();
}
void Graph::printMatrices() const {
//for(auto const row : m_flow) {
// for(auto const i : row) {
// std::cout << i << " ";
// } std::cout << std::endl;
//}
std::cout << std::endl;
for(auto const row : m_network) {
for(auto const i : row) {
std::cout << i << " ";
} std::cout << std::endl;
}
std::cout << std::endl;
for(auto const row : m_capapcities) {
for(auto const i : row) {
std::cout << i << " ";
} std::cout << std::endl;
}
std::cout << std::endl;
}
}