#include #include #include #include #include #include "Graph.h" #include "util/GraphParser.h" namespace data { Graph::Graph(bool stdout_output, bool file_output, std::string output_filename, bool verbose_max_flow, bool min_cut, int verbosity) : m_file_output(file_output), m_output_file_name(output_filename), m_verbose_max_flow(verbose_max_flow), m_min_cut(min_cut), m_verbosity(verbosity) { //if(!stdout_output && file_output) { // m_stdout_output = false; //} else { // m_stdout_output = true; //} } void Graph::parseFromString(const std::string &graph_string) { parser::parseString(graph_string, m_arc_list, m_vertices, m_source_id, m_sink_id, m_num_vertices, m_num_arcs); setSourceAndSinkIterator(); initMatrices(); initOstream(); } void Graph::parseFromFile(const std::string &graph_file) { if(graph_file == m_output_file_name) { throw std::runtime_error("Input graph file name and output file name are the same. Will not overwrite. Exiting..."); } parser::parseFile(graph_file, m_arc_list, m_vertices, m_source_id, m_sink_id, m_num_vertices, m_num_arcs); setSourceAndSinkIterator(); initMatrices(); initOstream(); } void Graph::initMatrices() { m_flow.resize(m_num_vertices, std::vector(m_num_vertices, 0)); m_capapcities.resize(m_num_vertices, std::vector(m_num_vertices, 0)); for(auto const &arc : m_arc_list) { m_capapcities.at(arc.start - 1).at(arc.end - 1) = arc.capacity; // how to best map arbitrary ids to index in matrix } } void Graph::setSourceAndSinkIterator() { auto m_source = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return (v.getID() == m_source_id); }); auto m_sink = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return (v.getID() == m_sink_id); }); } void Graph::initOstream() { if(m_file_output) { m_ofstream = new std::ofstream(m_output_file_name); } else { m_ofstream = &std::cout; } } void Graph::maxFlowDinic() { std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now(); printInformation(); do { constructLevelGraph(); } while(findAugmentingPaths() != NO_AUGMENTING_PATH_FOUND); *m_ofstream << "Found max flow |x| = " << m_max_flow << "\n"; if(m_verbose_max_flow) printMaxFlowInformation(); if(m_min_cut) printMinCut(); if(m_verbosity >= 1) printComputationStatistics(start, std::chrono::steady_clock::now()); } int Graph::findAugmentingPaths() { auto m_sink = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return v.getID() == m_sink_id; }); if(m_sink->getLevel() == UNDEF_LEVEL) { return NO_AUGMENTING_PATH_FOUND; } for(auto &v : m_vertices) { v.setVisited(false); } auto m_source = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return v.getID() == m_source_id; }); std::vector path{*m_source}; buildPath(path); return 0; } void Graph::buildPath(std::vector ¤t_path) { Vertex head = current_path.back(); if(head.getID() == m_sink_id) { computeFlowForPath(current_path); } for(auto const& arc : head.getOutgoingArcs()) { if(m_capapcities.at(arc.start - 1).at(arc.end - 1) <= 0) continue; auto it = std::find_if(m_vertices.begin(), m_vertices.end(), [&arc] (const Vertex &v) { return v.getID() == arc.end; }); if(head.getLevel() + 1 != it->getLevel()) continue; if(it != m_vertices.end()) { current_path.push_back(*it); buildPath(current_path); } current_path.pop_back(); } if(m_verbosity >= 1) m_num_build_path_calls++; } void Graph::computeFlowForPath(const std::vector ¤t_path) { std::vector path_capacities; for(uint i = 0; i < current_path.size() - 1; i++) { path_capacities.push_back(m_capapcities.at(current_path.at(i).getID() - 1).at(current_path.at(i + 1).getID() - 1)); } Capacity flow = *std::min_element(path_capacities.begin(), path_capacities.end()); m_max_flow += flow; for(uint i = 0; i < current_path.size() - 1; i++) { m_capapcities.at(current_path.at(i).getID() - 1).at(current_path.at(i + 1).getID() - 1) -= flow; m_flow.at(current_path.at(i).getID() - 1).at(current_path.at(i + 1).getID() - 1) += flow; } if(m_verbosity >= 1) m_num_paths++; if(m_verbosity >= 2) { std::stringstream path; path << std::to_string(current_path.front().getID()); for(uint i = 1; i < current_path.size(); i++) { path << " > " << current_path.at(i).getID(); } path << " | flow = " << flow; m_augmenting_paths.push_back(path.str()); } } void Graph::constructLevelGraph() { std::queue q; for(auto &v : m_vertices) { v.setLevel(UNDEF_LEVEL); } auto m_source = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return (v.getID() == m_source_id); }); m_source->setLevel(0); q.push(*m_source); while(!q.empty()) { Vertex current_vertex = q.front(); int current_level = current_vertex.getLevel(); q.pop(); // restructure this to use matrix for(auto const &arc : current_vertex.getOutgoingArcs()) { if(m_capapcities.at(arc.start - 1).at(arc.end - 1) <= 0) continue; auto it = std::find_if(m_vertices.begin(), m_vertices.end(), [&arc] (const Vertex &v) { return (v.getID() == arc.end) && !v.hasDefinedLevel(); }); if(it != m_vertices.end()) { it->setLevel(current_level + 1); q.push(*it); } } } if(m_verbosity >= 1) m_num_level_graphs_built++; } void Graph::printInformation() const { auto m_source = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return (v.getID() == m_source_id); }); auto m_sink = std::find_if(m_vertices.begin(), m_vertices.end(), [this] (const Vertex &v) { return (v.getID() == m_sink_id); }); *m_ofstream << "#Vertices: " << m_num_vertices << std::endl; *m_ofstream << "#Arc: " << m_num_arcs << std::endl; *m_ofstream << "Source: " << m_source->getID() << ", Sink: " << m_sink->getID() << std::endl; *m_ofstream << "Vertices: "; bool first = true; for(auto const& v : m_vertices) { if(first) first = false; else *m_ofstream << ", "; *m_ofstream << v.getID(); } *m_ofstream << std::endl; for(auto const& a : m_arc_list) { *m_ofstream << " " << a.start << " -> " << a.end << " capacity = " << a.capacity << std::endl; } *m_ofstream << std::endl; } void Graph::printMaxFlowInformation() const { *m_ofstream << "Max Flow per arc:\n"; for(auto const &arc : m_arc_list) { *m_ofstream << " " << arc.start << " -> " << arc.end << " flow = " << m_flow.at(arc.start - 1 ).at(arc.end - 1) << "/" << arc.capacity << "\n"; } } void Graph::printMinCut() const { std::vector min_cut, complement; for(auto const &vertex : m_vertices) { if(vertex.getLevel() != UNDEF_LEVEL) { min_cut.push_back(std::to_string(vertex.getID())); } else { complement.push_back(std::to_string(vertex.getID())); } } *m_ofstream << "Min Cut X: {"; bool first = true; for(auto const &v : min_cut) { if(first) first = false; else *m_ofstream << ", "; *m_ofstream << v; } *m_ofstream << "}\nComplement(X): {"; first = true; for(auto const &v : complement) { if(first) first = false; else *m_ofstream << ", "; *m_ofstream << v; } *m_ofstream << "}\n"; } void Graph::printComputationStatistics(const std::chrono::steady_clock::time_point &start, const std::chrono::steady_clock::time_point &end) const { *m_ofstream << "Elapsed time: " << std::chrono::duration_cast(end - start).count() << "ms (" << std::chrono::duration_cast(end - start).count() << "µs).\n"; *m_ofstream << "Computation Statistics:\n"; *m_ofstream << " #level graphs built: " << m_num_level_graphs_built << "\n"; *m_ofstream << " #augmenting paths computed: " << m_num_paths << "\n"; if(m_verbosity >= 2) { for(auto const &path : m_augmenting_paths) *m_ofstream << " " << path << "\n"; } *m_ofstream << " #recursive buildPath calls: " << m_num_build_path_calls << "\n"; } }