# coding: utf-8 import os, sys from z3 import * # get the playground information if len(sys.argv) != 2: print("Usage: python3 trees_and_tents.py ") EMPTY = "?" TREE = 2 if len(sys.argv) == 2: fname = sys.argv[1] with open(fname) as f: playground = f.read() cols = [col for col in playground.strip().split("\n")[0][1:]] rows = [row[0] for row in playground.strip().split("\n")[1:]] playground = [[EMPTY if x == EMPTY else x for x in row[1:]] for row in playground.strip().split("\n")[1:]] # get the playground size size_y = len(rows) assert(size_y != 0) size_x = len(cols) assert(size_x != 0) def print_result(model): print(" " + ''.join(cols) + " "*5 + ''.join(cols)) for i in range(size_y): print(rows[i] + " " + ''.join(playground[i]) + " >>> ", end='') for j in range(size_x): cell = model[cells[i][j]].as_long() if cell != TREE: print(cell, end='') elif cell == TREE: print("T", end='') print() def print_forest(): print(" " + ''.join(cols)) for i in range(size_y): print(rows[i] + " ", end='') for j in range(size_x): cell = playground[i][j] if cell != TREE: print(cell, end='') elif cell == TREE: print("T", end='') print() ################################# Trees and Tents ################################## # create the solver cells = [[None for j in range(size_x)] for i in range(size_y)] solver = Solver() def get_possible_tents_in_col(col): possible_tent_positions = [] for row in range(size_y): if playground[row][col] != "T": possible_tent_positions.append(cells[row][col]) return possible_tent_positions def get_possible_tents_in_row(row): possible_tent_positions = [] for col in range(size_x): if playground[row][col] != "T": possible_tent_positions.append(cells[row][col]) return possible_tent_positions def get_neighbours(i, j): cs = [] for p in range(max(i-1, 0), min(i+2, size_y)): for q in range(max(j-1, 0), min(j+2, size_x)): if p == i and q == j: continue cs.append(cells[p][q]) return cs def get_tree_neighbours(i, j): tree_pos = [] for p in [max(i-1, 0), min(i+1, size_y - 1)]: if p == i: continue tree_pos.append(cells[p][j]) for q in [max(j-1, 0), min(j+1, size_x - 1)]: if q == j: continue tree_pos.append(cells[i][q]) return tree_pos # TODO Cell entries need to be represented by a Z3 variable # TODO Bound/restrict the values of the cells according to the input # TODO The sums of tents per row/column must match the amounts given in the input for i in range(size_y): for j in range(size_x): if playground[i][j] == "T": # TODO A tent needs to be next to a tree # Incrementally build up the tree_constraint ... tree_constraint = False for possible_tent in get_tree_neighbours(i, j): pass else: neighbours = get_neighbours(i, j) # TODO A tent must not be next to another tent res = solver.check() if res == unsat: print("UNSAT") print_forest() else: m = solver.model() print(m) print_result(m)