
Logic and Computability SS24,
Programming Assignment

Due: 05. 06. 2024, 23:59

In order to get started with the programming exercises, install the z3-solver package via
pip:

• pip install z3-solver

If you have issues with the installation please, use the discord channel to ask for help.

We will provide you with the skeletons for the programming exercises so that you only
have to do the SMT encoding and testing. Please do not change major parts within those
skeletons without consulting your tutor first.

1. Start by cloning the following repository:
git clone https://git.pranger.xyz/sp/LAC-Practical-Assignments-2024 --origin upstream

2. The submission will be handled via your personal submission repository. Add the
remote repository with the following command:
git remote add origin https://git.teaching.iaik.tugraz.at/lc24/lc24gXX.git

3. After you have finished solving the exercises, commit your changes and push them
to your submission repository:
git push origin main

You do not need to tag your final commits. We will check out your last commit
before the deadline.

4. Additionally to uploading your solutions via git you need to tick which exercises
you have solved in the TeachCenter course.

1



You may work in groups of 2 students for this part of the practicals. If you work in
pairs, we still ask you to upload the solution to both of your personal repositories.
Additionally, please enter your details in the README of both repositories

1. [3 points] Burglars
We have given the statements of three suspects:

(a) Ed: ”Fred did it, and Ted is innocent.“
(b) Fred: ”If Ed is guilty, then so is Ted.“
(c) Ted: ”I’m innocent, but at least one of the others is guilty.“

Your task is to use z3 and the provided skeleton file burglars.py to find out who is
guilty and who is not.

2. [6 points] Branchless Minimum. We can use a bithack to compute the minimum
of two integers by directly applying the result of the comparison, i.e. slt tmp,rx,ry.
In order to verify this approach, we need to prove that the following statements
compute the minimum of x and y.

tmp = x < y ? 0x1 : 0x0 # slt tmp,rx,ry
min = y ^ ((x ^ y) & -tmp)

Note: This is a unary minus, not a bitwise toggle!

Your task is to declare necessary z3 variables and add the needed constraints to the
solver such that it checks for equivalence.
The source code skeleton for this exercise can be found in branchless_min.py.

2

https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax


3. [8 points] Magic Square. For this exercise, we will have a look at the classic pen
and paper puzzle called magic square. The premise of the game is very intuitive.
You are given a grid of numbers, where some cells are not filled out. Your goal is to
determine the missing numbers so that the sum in each row, column, and diagonal
is the same.
The magic square is read from a file, where the numbers are separated by spaces
and unknown cells are marked with ”_”. For the input file ’test0.txt’ the resulting
magic square is shown in Figure 1.
Note that the size of the grid is not fixed but may vary, whilst always going to be
square.

28
35 21
7

Figure 1: Example of a magic square.

Our goal is then to find the missing cells and fill out the square. This is where z3
can help us! An example solution is shown in Figure 2.

14 63 28
49 35 21
42 7 56

Figure 2: Solution of the example magic square.

The template handles the parsing of the input file, and the printing of the solved
square. The source code skeleton for this exercise can be found in square.py. Your
task is to add the needed constraints, such that Z3 provides a solution via the found
satisfying model.
To run your solver for an input you can simply pass it as an argument: python3
square.py square0.txt

3



4. [8 points] Tents and Trees. In this task you have to implement the contraints present
in the Tents and Trees Puzzle1. In this puzzle one has to put a tent next to each
tree on a (n×m) grid such that each tree has a tent either horizontally or vertically
adjacent (not diagonally). Furthermore, no tent should be adjacent to another tent,
not even diagonally. Numbers on the side of the grid indicate the required number
of tents in a given row or column.

Figure 3: Example of a Tents and Trees Puzzle and its solution.

The skeleton file for this problem prepares the parsing and some helper functions
that determine neighbours of a given cell. The source code skeleton for this exercise
can be found in trees_and_tents.py.
To run your solver for an input you can simply pass it as an argument: python3
trees_and_tents.py forest0.txt

1https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/tents.html

4

https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/tents.html


5. [10 points] [BONUS] Rock-Paper-Scissors-Spock-Lizard For this task you need
to model the computation of a linear-congruential generator. If you want to read more
about linear-congruential generators, please consult the wikipedia. Our opponent,
the computer, computes its choice by first computing a pseudo-random number si
that is based on the previous result si−1:

si = 11 · si−1 + 12345 & 0x7fff. (1)

Its choice ci is then computed with the remainder modulo 5:

ci = si mod 5, (2)

where

• ci = 0 means Rock,
• ci = 1 means Paper,
• ci = 2 means Scissors,
• ci = 3 means Spock, and
• ci = 4 means Lizard.

Your task is to model the computation of each si, starting from s1, and use your
knowledge about the computer’s choice to tell Z3 that ci == si mod 5. Note that
you do not know the value of s0 in this scenario. (The problem would become trivial
if you would have that information!)
The skeleton code can be found in rpssl.py. The snippet contains a class RPSSLComputer
that reads a seed value (s_0) and continuously returns the next computer’s choice
by calling compute_choice().
You execute the script by passing it a value for the seed:

python3 rpssl.py <seed>.

After you have implemented the correct constraints, your script will win continuously
after a few rounds, independently of the seed value.

5

https://en.wikipedia.org/wiki/Linear_congruential_generator


Implementation

The snippet simulates the game against the computer. For all rounds j ∈ {1, . . . , i}
that you have already played you can give Z3 the information that sj has been
computed via Eq. 1 and the computer’s choice cj via Eq. 2. Adding a constraint for
Eq. 1 for the current round i + 1 will make Z3 compute a good guess for si+1. You
can use this result to come up with a winning move against the computer.
The script starts with querying the computer for preprocess_count many choices
and calls a function (add_constraint(…)) where you add the appropriate constraints
to the solver. These constraints will describe the relationship between si and si−1

and the relationship between si, ci and the computer’s choice.
After this preprocessing is done, you are going to use Z3 to compute potential good
choices for the current round i+ 1 in the game. In order to ask Z3 for a good choice
you will model the computation that the computer will make for si+1 and add this
to the solver in the function add_next_state_constraint(…).
You can then use the resulting value of si+1 from the model and compute the re-
mainder modulo 5 to beat the computer. Implement this as the return value of
get_players_choice(…) using the winning_mapping.
The special variable s_i_plus_1 will always hold the value for the current round. Af-
ter you have extracted the value for si+1 for the current round, you need to remove the
constraint for this variable and add the constraints about the round that you have al-
ready played, using add_constraint(…). Note that this loop is already implemented
for you and uses store_backtracking_point(…) and restore_backtracking_point(…)
to correctly add and remove the constraints for s_i_plus_1.
You are going to solve the task by filling in the function bodies of three different
functions:

(a) add_constraint(…)
In this function we give Z3 our knowledge about the rounds we have played so
far.

i. Create a Z3 BitVector that stores 16 bits and append this to the states
list.

ii. Enforce that the newly added state evaluates to the LCG computation (1)
of the previous state.

iii. Enforce that the unsigned remainder modulo 5 of the newly added state is
equal to the computer’s choice.
Hint: Use the built-in function URem(si, 5) to model the remainder.

(b) add_next_state_constraint(…)
In this function we tell Z3 that the computer will compute si+1 via 1:

i. Enforce that s_i_plus_1 evaluates to the LCG computation (1) of the
previous state.

6

https://z3prover.github.io/api/html/namespacez3py.html#aec21d4855bd67ee88b5448d68c97a5d4


(c) get_players_choice(…)

i. Use the model that the solver came up with and winning_mapping to decide
the your choice for the next round of the game.

7


