
Logic and Computability SS23,
Assignment 2

Due: 23. 03. 2023, 23:59

Please pull (or download) the skeleton files from the upstream repository in order to get
started:

git pull upstream main

If you do not want to use git, you can download the two skeleton files directly from the
server:

https://git.pranger.xyz/sp/LAC-Practical-Assignments-2023/src/branch/main/Assignment2

If you download the files manually, please create a folder Assignment2 in your local repos-
itory.

Please also install colorama:

pip install colorama

The assignment sheet for this week is split into two tasks. For the first task, you will
encode the map colouring problem via z3. For the second task, we will make use of z3’s
uninterpreted functions to compute a seating arrangement for a wedding.

1

https://git.pranger.xyz/sp/LAC-Practical-Assignments-2023/src/branch/main/Assignment2

1. [7 Points] Map Colouring. For the first task you need to compute solutions to the
map colouring problem. You are given an m× n grid consisting of multiple regions,
each represented by a unique character.
The task is to colour all cells of a region with the same colour, while adjacent regions
need to be coloured with different colours. You are allowed to use four colours to
solve this task.

ABBBBBBBB
ACCCCCCCB
ACDEEEECF
ACDGHHECF
ADDGGIECF
ADIIIIFCF
ADJKKLFFF
AJJJKLLLL
AAMMMMMMM

Figure 1: An example map with 13 regions.

The parsing of the input map and splitting the map into regions is handled for you
in the skeleton file colours.py. Continue with implementing the following task to
solve the problem:

Subtask 1. [2 Points]
(a) Create a Z3 Datatype that represents colours. Populate it with four

colours of your choice.
(b) Create a Z3 sort from your datatype.
(c) Create a Z3 variable of your sort for each cell in the playground. You

should give them useful names, like C_0_0, C_2_3 to make debugging
easier.

Subtask 2. [3 Points] Enforce that cells of the same region have the same colour. To
to so, use the transitivity property of equality, i.e. if c1 = c2 ∧ c2 = c3 →
c1 = c3.

Subtask 3. [2 Points] Enforce that neighbouring cells from different regions need to
have different colours.

2

2. [8 Points] Seating Arrangement Problem. For the second task of this week, we
take a look at the seating arrangement problem. The problem that you are facing is
the following: There are only a few hours left before your weeding and you have lost
the seating plan for the big table. You and your friends have gathered a list of all to
be seated at the big table, but you cannot simply place them in any order since this
could lead to some unpleasant situations. Alongside the list of members at the table
you have also come up with a pairs of people which need to be seated next to each
other and some which need to have some other guests in between.
The input that you have come up with is a list of:

• A pair of friends: Bob likes Alice,
• a pair of foes: Ada dislikes Bob,
• a guest without preferences: John or
• a comment: #John likes Ada.

For this exercise, we will make use of Z3’s uninterpreted functions and uninterpreted
sorts.
The parsing of the list is handled for you in the skeleton file seating-arrangement.py.
Continue with implementing the following task to solve the problem:

Subtask 1. [1 Points] Extend the parsing by adding pairs of friends and foes to their
respective lists.

Subtask 2. [1 Points] Define a Z3 uninterpreted function that maps Guests to posi-
tions at the table.

Subtask 3. [2 Points] Define a function neighbours which returns whether two
guests are neighbours.

Subtask 4. [2 Points] Enforce that all guests are seated at the table, and that no
two guests will be seated at the same place.

Subtask 5. [2 Points] Enforce that friends need to be seated next to each other and
foes must not be seated next to each other.

We represent the positions at our table with an uninterpreted function which maps
to the integer positions at the table. Note that the table wraps around on both ends
of this integer list that we are mapping to, i.e. position 0 is right next to position
len(guests).

If we can find a proper seating plan which adheres to our given constraints we will
visualize it, otherwise Z3 will tell us that the constraints are not satisfiable. Note
that Z3 will not fully define the uninterpreted function, which means that we need
to extend the call to model.evaluate(...) to

3

model.evaluate(...,model_completion=True). The seating plan will be visual-
ized with a table in your terminal and as a list of the mapping in the very end of our
program call.

Patric dislikes Ada
Patric dislikes Katie
Patric dislikes Bob
Ada
John likes Alice
Bob likes Andrea
Andrea
Alice
Ada likes Julia
Ada likes Katie
Robert

Figure 2: The constraints and member list that you have come up with.

Patric Robert

Andrea|<<<<<<<<<<<<<<<<<<<<<|Katie
|>>>>>>>>>>>>>>>>>>>>>|

Bob|<<<<<<<<<<<<<<<<<<<<<|Ada
|>>>>>>>>>>>>>>>>>>>>>|

John|<<<<<<<<<<<<<<<<<<<<<|

Alice Julia

Seating plan:[’Patric’, ’Robert’, ’Katie’, ’Ada’, ’Julia’,
’Alice’, ’John’, ’Bob’, ’Andrea’]

Figure 3: A possible seating plan for the given input file from Figure 1.

4

