The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

555 lines
19 KiB

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <time.h>
#include <sys/types.h>
#include <sys/time.h>
#include <inttypes.h>
#include "sylvan.h"
#include "test_assert.h"
#include "sylvan_int.h"
__thread uint64_t seed = 1;
uint64_t
xorshift_rand(void)
{
uint64_t x = seed;
if (seed == 0) seed = rand();
x ^= x >> 12;
x ^= x << 25;
x ^= x >> 27;
seed = x;
return x * 2685821657736338717LL;
}
double
uniform_deviate(uint64_t seed)
{
return seed * (1.0 / (0xffffffffffffffffL + 1.0));
}
int
rng(int low, int high)
{
return low + uniform_deviate(xorshift_rand()) * (high-low);
}
static int
test_cache()
{
test_assert(cache_getused() == 0);
/**
* Test cache for large number of random entries
*/
size_t number_add = 4000000;
uint64_t *arr = (uint64_t*)malloc(sizeof(uint64_t)*4*number_add);
for (size_t i=0; i<number_add*4; i++) arr[i] = xorshift_rand();
for (size_t i=0; i<number_add; i++) {
test_assert(cache_put(arr[4*i], arr[4*i+1], arr[4*i+2], arr[4*i+3]));
uint64_t val;
int res = cache_get(arr[4*i], arr[4*i+1], arr[4*i+2], &val);
test_assert(res == 1);
test_assert(val == arr[4*i+3]);
}
size_t count = 0;
for (size_t i=0; i<number_add; i++) {
uint64_t val;
int res = cache_get(arr[4*i], arr[4*i+1], arr[4*i+2], &val);
test_assert(res == 0 || val == arr[4*i+3]);
if (res) count++;
}
test_assert(count == cache_getused());
/**
* Now also test for double entries
*/
for (size_t i=0; i<number_add/2; i++) {
test_assert(cache_put6(arr[8*i], arr[8*i+1], arr[8*i+2], arr[8*i+3], arr[8*i+4], arr[8*i+5], arr[8*i+6], arr[8*i+7]));
uint64_t val1, val2;
int res = cache_get6(arr[8*i], arr[8*i+1], arr[8*i+2], arr[8*i+3], arr[8*i+4], arr[8*i+5], &val1, &val2);
test_assert(res == 1);
test_assert(val1 == arr[8*i+6]);
test_assert(val2 == arr[8*i+7]);
}
for (size_t i=0; i<number_add/2; i++) {
uint64_t val1, val2;
int res = cache_get6(arr[8*i], arr[8*i+1], arr[8*i+2], arr[8*i+3], arr[8*i+4], arr[8*i+5], &val1, &val2);
test_assert(res == 0 || (val1 == arr[8*i+6] && val2 == arr[8*i+7]));
}
/**
* And test that single entries are not corrupted
*/
for (size_t i=0; i<number_add; i++) {
uint64_t val;
int res = cache_get(arr[4*i], arr[4*i+1], arr[4*i+2], &val);
test_assert(res == 0 || val == arr[4*i+3]);
}
/**
* TODO: multithreaded test
*/
free(arr);
return 0;
}
static inline BDD
make_random(int i, int j)
{
if (i == j) return rng(0, 2) ? sylvan_true : sylvan_false;
BDD yes = make_random(i+1, j);
BDD no = make_random(i+1, j);
BDD result = sylvan_invalid;
switch(rng(0, 4)) {
case 0:
result = no;
sylvan_deref(yes);
break;
case 1:
result = yes;
sylvan_deref(no);
break;
case 2:
result = sylvan_ref(sylvan_makenode(i, yes, no));
sylvan_deref(no);
sylvan_deref(yes);
break;
case 3:
default:
result = sylvan_ref(sylvan_makenode(i, no, yes));
sylvan_deref(no);
sylvan_deref(yes);
break;
}
return result;
}
static MDD
make_random_ldd_set(int depth, int maxvalue, int elements)
{
uint32_t values[depth];
MDD result = mtbdd_false; // empty set
for (int i=0; i<elements; i++) {
lddmc_refs_push(result);
for (int j=0; j<depth; j++) {
values[j] = rng(0, maxvalue);
}
result = lddmc_union_cube(result, values, depth);
lddmc_refs_pop(1);
}
return result;
}
int testEqual(BDD a, BDD b)
{
if (a == b) return 1;
if (a == sylvan_invalid) {
fprintf(stderr, "a is invalid!\n");
return 0;
}
if (b == sylvan_invalid) {
fprintf(stderr, "b is invalid!\n");
return 0;
}
fprintf(stderr, "a and b are not equal!\n");
sylvan_fprint(stderr, a);fprintf(stderr, "\n");
sylvan_fprint(stderr, b);fprintf(stderr, "\n");
return 0;
}
int
test_bdd()
{
test_assert(sylvan_makenode(sylvan_ithvar(1), sylvan_true, sylvan_true) == sylvan_not(sylvan_makenode(sylvan_ithvar(1), sylvan_false, sylvan_false)));
test_assert(sylvan_makenode(sylvan_ithvar(1), sylvan_false, sylvan_true) == sylvan_not(sylvan_makenode(sylvan_ithvar(1), sylvan_true, sylvan_false)));
test_assert(sylvan_makenode(sylvan_ithvar(1), sylvan_true, sylvan_false) == sylvan_not(sylvan_makenode(sylvan_ithvar(1), sylvan_false, sylvan_true)));
test_assert(sylvan_makenode(sylvan_ithvar(1), sylvan_false, sylvan_false) == sylvan_not(sylvan_makenode(sylvan_ithvar(1), sylvan_true, sylvan_true)));
return 0;
}
int
test_cube()
{
LACE_ME;
const BDDSET vars = sylvan_set_fromarray(((BDDVAR[]){1,2,3,4,6,8}), 6);
uint8_t cube[6], check[6];
int i, j;
for (i=0;i<6;i++) cube[i] = rng(0,3);
BDD bdd = sylvan_cube(vars, cube);
sylvan_sat_one(bdd, vars, check);
for (i=0; i<6;i++) test_assert(cube[i] == check[i] || (cube[i] == 2 && check[i] == 0));
BDD picked_single = sylvan_pick_single_cube(bdd, vars);
test_assert(testEqual(sylvan_and(picked_single, bdd), picked_single));
assert(sylvan_satcount(picked_single, vars)==1);
BDD picked = sylvan_pick_cube(bdd);
test_assert(testEqual(sylvan_and(picked, bdd), picked));
BDD t1 = sylvan_cube(vars, ((uint8_t[]){1,1,2,2,0,0}));
BDD t2 = sylvan_cube(vars, ((uint8_t[]){1,1,1,0,0,2}));
test_assert(testEqual(sylvan_union_cube(t1, vars, ((uint8_t[]){1,1,1,0,0,2})), sylvan_or(t1, t2)));
t2 = sylvan_cube(vars, ((uint8_t[]){2,2,2,1,1,0}));
test_assert(testEqual(sylvan_union_cube(t1, vars, ((uint8_t[]){2,2,2,1,1,0})), sylvan_or(t1, t2)));
t2 = sylvan_cube(vars, ((uint8_t[]){1,1,1,0,0,0}));
test_assert(testEqual(sylvan_union_cube(t1, vars, ((uint8_t[]){1,1,1,0,0,0})), sylvan_or(t1, t2)));
bdd = make_random(1, 16);
for (j=0;j<10;j++) {
for (i=0;i<6;i++) cube[i] = rng(0,3);
BDD c = sylvan_cube(vars, cube);
test_assert(sylvan_union_cube(bdd, vars, cube) == sylvan_or(bdd, c));
}
for (i=0;i<10;i++) {
picked = sylvan_pick_cube(bdd);
test_assert(testEqual(sylvan_and(picked, bdd), picked));
}
// simple test for mtbdd_enum_all
uint8_t arr[6];
MTBDD leaf = mtbdd_enum_all_first(mtbdd_true, vars, arr, NULL);
test_assert(leaf == mtbdd_true);
test_assert(mtbdd_enum_all_first(mtbdd_true, vars, arr, NULL) == mtbdd_true);
test_assert(arr[0] == 0 && arr[1] == 0 && arr[2] == 0 && arr[3] == 0 && arr[4] == 0 && arr[5] == 0);
test_assert(mtbdd_enum_all_next(mtbdd_true, vars, arr, NULL) == mtbdd_true);
test_assert(arr[0] == 0 && arr[1] == 0 && arr[2] == 0 && arr[3] == 0 && arr[4] == 0 && arr[5] == 1);
test_assert(mtbdd_enum_all_next(mtbdd_true, vars, arr, NULL) == mtbdd_true);
test_assert(arr[0] == 0 && arr[1] == 0 && arr[2] == 0 && arr[3] == 0 && arr[4] == 1 && arr[5] == 0);
test_assert(mtbdd_enum_all_next(mtbdd_true, vars, arr, NULL) == mtbdd_true);
test_assert(arr[0] == 0 && arr[1] == 0 && arr[2] == 0 && arr[3] == 0 && arr[4] == 1 && arr[5] == 1);
test_assert(mtbdd_enum_all_next(mtbdd_true, vars, arr, NULL) == mtbdd_true);
test_assert(arr[0] == 0 && arr[1] == 0 && arr[2] == 0 && arr[3] == 1 && arr[4] == 0 && arr[5] == 0);
test_assert(mtbdd_enum_all_next(mtbdd_true, vars, arr, NULL) == mtbdd_true);
test_assert(arr[0] == 0 && arr[1] == 0 && arr[2] == 0 && arr[3] == 1 && arr[4] == 0 && arr[5] == 1);
test_assert(mtbdd_enum_all_next(mtbdd_true, vars, arr, NULL) == mtbdd_true);
test_assert(arr[0] == 0 && arr[1] == 0 && arr[2] == 0 && arr[3] == 1 && arr[4] == 1 && arr[5] == 0);
mtbdd_enum_all_first(mtbdd_true, vars, arr, NULL);
size_t count = 1;
while (mtbdd_enum_all_next(mtbdd_true, vars, arr, NULL) != mtbdd_false) {
test_assert(count < 64);
count++;
}
test_assert(count == 64);
return 0;
}
static int
test_operators()
{
// We need to test: xor, and, or, nand, nor, imp, biimp, invimp, diff, less
LACE_ME;
//int i;
BDD a = sylvan_ithvar(1);
BDD b = sylvan_ithvar(2);
BDD one = make_random(1, 12);
BDD two = make_random(6, 24);
// Test or
test_assert(testEqual(sylvan_or(a, b), sylvan_makenode(1, b, sylvan_true)));
test_assert(testEqual(sylvan_or(a, b), sylvan_or(b, a)));
test_assert(testEqual(sylvan_or(one, two), sylvan_or(two, one)));
// Test and
test_assert(testEqual(sylvan_and(a, b), sylvan_makenode(1, sylvan_false, b)));
test_assert(testEqual(sylvan_and(a, b), sylvan_and(b, a)));
test_assert(testEqual(sylvan_and(one, two), sylvan_and(two, one)));
// Test xor
test_assert(testEqual(sylvan_xor(a, b), sylvan_makenode(1, b, sylvan_not(b))));
test_assert(testEqual(sylvan_xor(a, b), sylvan_xor(a, b)));
test_assert(testEqual(sylvan_xor(a, b), sylvan_xor(b, a)));
test_assert(testEqual(sylvan_xor(one, two), sylvan_xor(two, one)));
test_assert(testEqual(sylvan_xor(a, b), sylvan_ite(a, sylvan_not(b), b)));
// Test diff
test_assert(testEqual(sylvan_diff(a, b), sylvan_diff(a, b)));
test_assert(testEqual(sylvan_diff(a, b), sylvan_diff(a, sylvan_and(a, b))));
test_assert(testEqual(sylvan_diff(a, b), sylvan_and(a, sylvan_not(b))));
test_assert(testEqual(sylvan_diff(a, b), sylvan_ite(b, sylvan_false, a)));
test_assert(testEqual(sylvan_diff(one, two), sylvan_diff(one, two)));
test_assert(testEqual(sylvan_diff(one, two), sylvan_diff(one, sylvan_and(one, two))));
test_assert(testEqual(sylvan_diff(one, two), sylvan_and(one, sylvan_not(two))));
test_assert(testEqual(sylvan_diff(one, two), sylvan_ite(two, sylvan_false, one)));
// Test biimp
test_assert(testEqual(sylvan_biimp(a, b), sylvan_makenode(1, sylvan_not(b), b)));
test_assert(testEqual(sylvan_biimp(a, b), sylvan_biimp(b, a)));
test_assert(testEqual(sylvan_biimp(one, two), sylvan_biimp(two, one)));
// Test nand / and
test_assert(testEqual(sylvan_not(sylvan_and(a, b)), sylvan_nand(b, a)));
test_assert(testEqual(sylvan_not(sylvan_and(one, two)), sylvan_nand(two, one)));
// Test nor / or
test_assert(testEqual(sylvan_not(sylvan_or(a, b)), sylvan_nor(b, a)));
test_assert(testEqual(sylvan_not(sylvan_or(one, two)), sylvan_nor(two, one)));
// Test xor / biimp
test_assert(testEqual(sylvan_xor(a, b), sylvan_not(sylvan_biimp(b, a))));
test_assert(testEqual(sylvan_xor(one, two), sylvan_not(sylvan_biimp(two, one))));
// Test imp
test_assert(testEqual(sylvan_imp(a, b), sylvan_ite(a, b, sylvan_true)));
test_assert(testEqual(sylvan_imp(one, two), sylvan_ite(one, two, sylvan_true)));
test_assert(testEqual(sylvan_imp(one, two), sylvan_not(sylvan_diff(one, two))));
test_assert(testEqual(sylvan_invimp(one, two), sylvan_not(sylvan_less(one, two))));
test_assert(testEqual(sylvan_imp(a, b), sylvan_invimp(b, a)));
test_assert(testEqual(sylvan_imp(one, two), sylvan_invimp(two, one)));
return 0;
}
int
test_relprod()
{
LACE_ME;
BDDVAR vars[] = {0,2,4};
BDDVAR all_vars[] = {0,1,2,3,4,5};
BDDSET vars_set = sylvan_set_fromarray(vars, 3);
BDDSET all_vars_set = sylvan_set_fromarray(all_vars, 6);
BDD s, t, next, prev;
BDD zeroes, ones;
// transition relation: 000 --> 111 and !000 --> 000
t = sylvan_false;
t = sylvan_union_cube(t, all_vars_set, ((uint8_t[]){0,1,0,1,0,1}));
t = sylvan_union_cube(t, all_vars_set, ((uint8_t[]){1,0,2,0,2,0}));
t = sylvan_union_cube(t, all_vars_set, ((uint8_t[]){2,0,1,0,2,0}));
t = sylvan_union_cube(t, all_vars_set, ((uint8_t[]){2,0,2,0,1,0}));
s = sylvan_cube(vars_set, (uint8_t[]){0,0,1});
zeroes = sylvan_cube(vars_set, (uint8_t[]){0,0,0});
ones = sylvan_cube(vars_set, (uint8_t[]){1,1,1});
next = sylvan_relnext(s, t, all_vars_set);
prev = sylvan_relprev(t, next, all_vars_set);
test_assert(next == zeroes);
test_assert(prev == sylvan_not(zeroes));
next = sylvan_relnext(next, t, all_vars_set);
prev = sylvan_relprev(t, next, all_vars_set);
test_assert(next == ones);
test_assert(prev == zeroes);
t = sylvan_cube(all_vars_set, (uint8_t[]){0,0,0,0,0,1});
test_assert(sylvan_relprev(t, s, all_vars_set) == zeroes);
test_assert(sylvan_relprev(t, sylvan_not(s), all_vars_set) == sylvan_false);
test_assert(sylvan_relnext(s, t, all_vars_set) == sylvan_false);
test_assert(sylvan_relnext(zeroes, t, all_vars_set) == s);
t = sylvan_cube(all_vars_set, (uint8_t[]){0,0,0,0,0,2});
test_assert(sylvan_relprev(t, s, all_vars_set) == zeroes);
test_assert(sylvan_relprev(t, zeroes, all_vars_set) == zeroes);
test_assert(sylvan_relnext(sylvan_not(zeroes), t, all_vars_set) == sylvan_false);
return 0;
}
int
test_compose()
{
LACE_ME;
BDD a = sylvan_ithvar(1);
BDD b = sylvan_ithvar(2);
BDD a_or_b = sylvan_or(a, b);
BDD one = make_random(3, 16);
BDD two = make_random(8, 24);
BDDMAP map = sylvan_map_empty();
map = sylvan_map_add(map, 1, one);
map = sylvan_map_add(map, 2, two);
test_assert(sylvan_map_key(map) == 1);
test_assert(sylvan_map_value(map) == one);
test_assert(sylvan_map_key(sylvan_map_next(map)) == 2);
test_assert(sylvan_map_value(sylvan_map_next(map)) == two);
test_assert(testEqual(one, sylvan_compose(a, map)));
test_assert(testEqual(two, sylvan_compose(b, map)));
test_assert(testEqual(sylvan_or(one, two), sylvan_compose(a_or_b, map)));
map = sylvan_map_add(map, 2, one);
test_assert(testEqual(sylvan_compose(a_or_b, map), one));
map = sylvan_map_add(map, 1, two);
test_assert(testEqual(sylvan_or(one, two), sylvan_compose(a_or_b, map)));
test_assert(testEqual(sylvan_and(one, two), sylvan_compose(sylvan_and(a, b), map)));
// test that composing [0:=true] on "0" yields true
map = sylvan_map_add(sylvan_map_empty(), 1, sylvan_true);
test_assert(testEqual(sylvan_compose(a, map), sylvan_true));
// test that composing [0:=false] on "0" yields false
map = sylvan_map_add(sylvan_map_empty(), 1, sylvan_false);
test_assert(testEqual(sylvan_compose(a, map), sylvan_false));
return 0;
}
int
test_ldd()
{
// very basic testing of makenode
for (int i=0; i<10; i++) {
uint32_t value = rng(0, 100);
MDD m = lddmc_makenode(value, lddmc_true, lddmc_false);
test_assert(lddmc_getvalue(m) == value);
test_assert(lddmc_getdown(m) == lddmc_true);
test_assert(lddmc_getright(m) == lddmc_false);
test_assert(lddmc_iscopy(m) == 0);
test_assert(lddmc_follow(m, value) == lddmc_true);
for (int j=0; j<100; j++) {
uint32_t other_value = rng(0, 100);
if (value != other_value) test_assert(lddmc_follow(m, other_value) == lddmc_false);
}
}
// test handling of the copy node by primitives
MDD m = lddmc_make_copynode(lddmc_true, lddmc_false);
test_assert(lddmc_iscopy(m) == 1);
test_assert(lddmc_getvalue(m) == 0);
test_assert(lddmc_getdown(m) == lddmc_true);
test_assert(lddmc_getright(m) == lddmc_false);
m = lddmc_extendnode(m, 0, lddmc_true);
test_assert(lddmc_iscopy(m) == 1);
test_assert(lddmc_getvalue(m) == 0);
test_assert(lddmc_getdown(m) == lddmc_true);
test_assert(lddmc_getright(m) != lddmc_false);
test_assert(lddmc_follow(m, 0) == lddmc_true);
test_assert(lddmc_getvalue(lddmc_getright(m)) == 0);
test_assert(lddmc_iscopy(lddmc_getright(m)) == 0);
test_assert(lddmc_makenode(0, lddmc_true, lddmc_false) == lddmc_getright(m));
LACE_ME;
// test union_cube
for (int i=0; i<100; i++) {
int depth = rng(1, 6);
int elements = rng(1, 30);
m = make_random_ldd_set(depth, 10, elements);
assert(m != lddmc_true);
assert(m != lddmc_false);
assert(lddmc_satcount(m) <= elements);
assert(lddmc_satcount(m) >= 1);
}
// test simply transition relation
{
MDD states, rel, meta, expected;
// relation: (0,0) to (1,1)
rel = lddmc_cube((uint32_t[]){0,1,0,1}, 4);
test_assert(lddmc_satcount(rel) == 1);
// relation: (0,0) to (2,2)
rel = lddmc_union_cube(rel, (uint32_t[]){0,2,0,2}, 4);
test_assert(lddmc_satcount(rel) == 2);
// meta: read write read write
meta = lddmc_cube((uint32_t[]){1,2,1,2}, 4);
test_assert(lddmc_satcount(meta) == 1);
// initial state: (0,0)
states = lddmc_cube((uint32_t[]){0,0}, 2);
test_assert(lddmc_satcount(states) == 1);
// relprod should give two states
states = lddmc_relprod(states, rel, meta);
test_assert(lddmc_satcount(states) == 2);
// relprod should give states (1,1) and (2,2)
expected = lddmc_cube((uint32_t[]){1,1}, 2);
expected = lddmc_union_cube(expected, (uint32_t[]){2,2}, 2);
test_assert(states == expected);
// now test relprod union on the simple example
states = lddmc_cube((uint32_t[]){0,0}, 2);
states = lddmc_relprod_union(states, rel, meta, states);
test_assert(lddmc_satcount(states) == 3);
test_assert(states == lddmc_union(states, expected));
// now create transition (1,1) --> (1,1) (using copy nodes)
rel = lddmc_cube_copy((uint32_t[]){1,0,1,0}, (int[]){0,1,0,1}, 4);
states = lddmc_relprod(states, rel, meta);
// the result should be just state (1,1)
test_assert(states == lddmc_cube((uint32_t[]){1,1}, 2));
MDD statezero = lddmc_cube((uint32_t[]){0,0}, 2);
states = lddmc_union_cube(statezero, (uint32_t[]){1,1}, 2);
test_assert(lddmc_relprod_union(states, rel, meta, statezero) == states);
// now create transition (*,*) --> (*,*) (copy nodes)
rel = lddmc_cube_copy((uint32_t[]){0,0}, (int[]){1,1}, 2);
meta = lddmc_cube((uint32_t[]){4,4}, 2);
states = make_random_ldd_set(2, 10, 10);
MDD states2 = make_random_ldd_set(2, 10, 10);
test_assert(lddmc_union(states, states2) == lddmc_relprod_union(states, rel, meta, states2));
}
return 0;
}
int runtests()
{
// we are not testing garbage collection
sylvan_gc_disable();
if (test_cache()) return 1;
if (test_bdd()) return 1;
for (int j=0;j<10;j++) if (test_cube()) return 1;
for (int j=0;j<10;j++) if (test_relprod()) return 1;
for (int j=0;j<10;j++) if (test_compose()) return 1;
for (int j=0;j<10;j++) if (test_operators()) return 1;
if (test_ldd()) return 1;
return 0;
}
int main()
{
// Standard Lace initialization with 1 worker
lace_init(1, 0);
lace_startup(0, NULL, NULL);
// Simple Sylvan initialization, also initialize BDD, MTBDD and LDD support
sylvan_set_sizes(1LL<<20, 1LL<<20, 1LL<<16, 1LL<<16);
sylvan_init_package();
sylvan_init_bdd();
sylvan_init_mtbdd();
sylvan_init_ldd();
int res = runtests();
sylvan_quit();
lace_exit();
return res;
}