The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

578 lines
15 KiB

/**
@file
@ingroup cudd
@brief Function to read a matrix in Harwell format.
@author Fabio Somenzi
@copyright@parblock
Copyright (c) 1995-2015, Regents of the University of Colorado
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Neither the name of the University of Colorado nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
@endparblock
*/
#include "util.h"
#include "cuddInt.h"
/*---------------------------------------------------------------------------*/
/* Constant declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Stucture declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Type declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Macro declarations */
/*---------------------------------------------------------------------------*/
/** \cond */
/*---------------------------------------------------------------------------*/
/* Static function prototypes */
/*---------------------------------------------------------------------------*/
/** \endcond */
/*---------------------------------------------------------------------------*/
/* Definition of exported functions */
/*---------------------------------------------------------------------------*/
/**
@brief Reads in a matrix in the format of the Harwell-Boeing
benchmark suite.
@details The variables are ordered as follows:
<blockquote>
x\[0\] y\[0\] x\[1\] y\[1\] ...
</blockquote>
0 is the most significant bit. On input, nx and ny hold the numbers
of row and column variables already in existence.
@return 1 on success; 0 otherwise.
@sideeffect On output, nx and ny hold the numbers of row and column
variables actually used by the matrix. m and n are set to the
numbers of rows and columns of the matrix. Their values on input
are immaterial. The %ADD for the sparse matrix is returned in E, and
its reference count is > 0.
@see Cudd_addRead Cudd_bddRead
*/
int
Cudd_addHarwell(
FILE * fp /**< pointer to the input file */,
DdManager * dd /**< %DD manager */,
DdNode ** E /**< characteristic function of the graph */,
DdNode *** x /**< array of row variables */,
DdNode *** y /**< array of column variables */,
DdNode *** xn /**< array of complemented row variables */,
DdNode *** yn_ /**< array of complemented column variables */,
int * nx /**< number or row variables */,
int * ny /**< number or column variables */,
int * m /**< number of rows */,
int * n /**< number of columns */,
int bx /**< first index of row variables */,
int sx /**< step of row variables */,
int by /**< first index of column variables */,
int sy /**< step of column variables */,
int pr /**< verbosity level */)
{
DdNode *one, *zero;
DdNode *w;
DdNode *cubex, *cubey, *minterm1;
int u, v, err, i, j, nv;
double val;
/* local copies of x, y, xn, yn_ */
DdNode **lx = NULL, **ly = NULL, **lxn = NULL, **lyn = NULL;
int lnx, lny; /* local copies of nx and ny */
char title[73], key[9], mxtype[4], rhstyp[4];
int totcrd, ptrcrd, indcrd, valcrd, rhscrd,
nrow, ncol, nnzero, neltvl,
nrhs, nrhsix;
int *colptr, *rowind;
#if 0
int nguess, nexact;
int *rhsptr, *rhsind;
#endif
if (*nx < 0 || *ny < 0) return(0);
one = DD_ONE(dd);
zero = DD_ZERO(dd);
/* Read the header */
err = fscanf(fp, "%72c %8c", title, key);
if (err == EOF) {
return(0);
} else if (err != 2) {
return(0);
}
title[72] = (char) 0;
key[8] = (char) 0;
err = fscanf(fp, "%d %d %d %d %d", &totcrd, &ptrcrd, &indcrd,
&valcrd, &rhscrd);
if (err == EOF) {
return(0);
} else if (err != 5) {
return(0);
}
err = fscanf(fp, "%3s %d %d %d %d", mxtype, &nrow, &ncol,
&nnzero, &neltvl);
if (err == EOF) {
return(0);
} else if (err != 5) {
return(0);
}
/* Skip FORTRAN formats */
if (rhscrd == 0) {
err = fscanf(fp, "%*s %*s %*s \n");
} else {
err = fscanf(fp, "%*s %*s %*s %*s \n");
}
if (err == EOF) {
return(0);
} else if (err != 0) {
return(0);
}
/* Print out some stuff if requested to be verbose */
if (pr>0) {
(void) fprintf(dd->out,"%s: type %s, %d rows, %d columns, %d entries\n", key,
mxtype, nrow, ncol, nnzero);
if (pr>1) (void) fprintf(dd->out,"%s\n", title);
}
/* Check matrix type */
if (mxtype[0] != 'R' || mxtype[1] != 'U' || mxtype[2] != 'A') {
(void) fprintf(dd->err,"%s: Illegal matrix type: %s\n",
key, mxtype);
return(0);
}
if (neltvl != 0) return(0);
/* Read optional 5-th line */
if (rhscrd != 0) {
err = fscanf(fp, "%3c %d %d", rhstyp, &nrhs, &nrhsix);
if (err == EOF) {
return(0);
} else if (err != 3) {
return(0);
}
rhstyp[3] = (char) 0;
if (rhstyp[0] != 'F') {
(void) fprintf(dd->err,
"%s: Sparse right-hand side not yet supported\n", key);
return(0);
}
if (pr>0) (void) fprintf(dd->out,"%d right-hand side(s)\n", nrhs);
} else {
nrhs = 0;
}
/* Compute the number of variables */
/* row and column numbers start from 0 */
u = nrow - 1;
for (i=0; u > 0; i++) {
u >>= 1;
}
lnx = i;
if (nrhs == 0) {
v = ncol - 1;
} else {
v = 2* (ddMax(ncol, nrhs) - 1);
}
for (i=0; v > 0; i++) {
v >>= 1;
}
lny = i;
/* Allocate or reallocate arrays for variables as needed */
if (*nx == 0) {
if (lnx > 0) {
*x = lx = ALLOC(DdNode *,lnx);
if (lx == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
*xn = lxn = ALLOC(DdNode *,lnx);
if (lxn == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
} else {
*x = *xn = NULL;
}
} else if (lnx > *nx) {
*x = lx = REALLOC(DdNode *, *x, lnx);
if (lx == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
*xn = lxn = REALLOC(DdNode *, *xn, lnx);
if (lxn == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
} else {
lx = *x;
lxn = *xn;
}
if (*ny == 0) {
if (lny >0) {
*y = ly = ALLOC(DdNode *,lny);
if (ly == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
*yn_ = lyn = ALLOC(DdNode *,lny);
if (lyn == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
} else {
*y = *yn_ = NULL;
}
} else if (lny > *ny) {
*y = ly = REALLOC(DdNode *, *y, lny);
if (ly == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
*yn_ = lyn = REALLOC(DdNode *, *yn_, lny);
if (lyn == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
} else {
ly = *y;
lyn = *yn_;
}
/* Create new variables as needed */
for (i= *nx,nv=bx+(*nx)*sx; i < lnx; i++,nv+=sx) {
do {
dd->reordered = 0;
lx[i] = cuddUniqueInter(dd, nv, one, zero);
} while (dd->reordered == 1);
if (lx[i] == NULL) {
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
dd->timeoutHandler(dd, dd->tohArg);
}
return(0);
}
cuddRef(lx[i]);
do {
dd->reordered = 0;
lxn[i] = cuddUniqueInter(dd, nv, zero, one);
} while (dd->reordered == 1);
if (lxn[i] == NULL) {
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
dd->timeoutHandler(dd, dd->tohArg);
}
return(0);
}
cuddRef(lxn[i]);
}
for (i= *ny,nv=by+(*ny)*sy; i < lny; i++,nv+=sy) {
do {
dd->reordered = 0;
ly[i] = cuddUniqueInter(dd, nv, one, zero);
} while (dd->reordered == 1);
if (ly[i] == NULL) {
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
dd->timeoutHandler(dd, dd->tohArg);
}
return(0);
}
cuddRef(ly[i]);
do {
dd->reordered = 0;
lyn[i] = cuddUniqueInter(dd, nv, zero, one);
} while (dd->reordered == 1);
if (lyn[i] == NULL) {
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
dd->timeoutHandler(dd, dd->tohArg);
}
return(0);
}
cuddRef(lyn[i]);
}
/* Update matrix parameters */
*nx = lnx;
*ny = lny;
*m = nrow;
if (nrhs == 0) {
*n = ncol;
} else {
*n = (1 << (lny - 1)) + nrhs;
}
/* Read structure data */
colptr = ALLOC(int, ncol+1);
if (colptr == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
rowind = ALLOC(int, nnzero);
if (rowind == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
for (i=0; i<ncol+1; i++) {
err = fscanf(fp, " %d ", &u);
if (err == EOF){
FREE(colptr);
FREE(rowind);
return(0);
} else if (err != 1) {
FREE(colptr);
FREE(rowind);
return(0);
}
colptr[i] = u - 1;
}
if (colptr[0] != 0) {
(void) fprintf(dd->err,"%s: Unexpected colptr[0] (%d)\n",
key,colptr[0]);
FREE(colptr);
FREE(rowind);
return(0);
}
for (i=0; i<nnzero; i++) {
err = fscanf(fp, " %d ", &u);
if (err == EOF){
FREE(colptr);
FREE(rowind);
return(0);
} else if (err != 1) {
FREE(colptr);
FREE(rowind);
return(0);
}
rowind[i] = u - 1;
}
*E = zero; cuddRef(*E);
for (j=0; j<ncol; j++) {
v = j;
cubey = one; cuddRef(cubey);
for (nv = lny - 1; nv>=0; nv--) {
if (v & 1) {
w = Cudd_addApply(dd, Cudd_addTimes, cubey, ly[nv]);
} else {
w = Cudd_addApply(dd, Cudd_addTimes, cubey, lyn[nv]);
}
if (w == NULL) {
Cudd_RecursiveDeref(dd, cubey);
FREE(colptr);
FREE(rowind);
return(0);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, cubey);
cubey = w;
v >>= 1;
}
for (i=colptr[j]; i<colptr[j+1]; i++) {
u = rowind[i];
err = fscanf(fp, " %lf ", &val);
if (err == EOF || err != 1){
Cudd_RecursiveDeref(dd, cubey);
FREE(colptr);
FREE(rowind);
return(0);
}
/* Create new Constant node if necessary */
cubex = cuddUniqueConst(dd, (CUDD_VALUE_TYPE) val);
if (cubex == NULL) {
Cudd_RecursiveDeref(dd, cubey);
FREE(colptr);
FREE(rowind);
return(0);
}
cuddRef(cubex);
for (nv = lnx - 1; nv>=0; nv--) {
if (u & 1) {
w = Cudd_addApply(dd, Cudd_addTimes, cubex, lx[nv]);
} else {
w = Cudd_addApply(dd, Cudd_addTimes, cubex, lxn[nv]);
}
if (w == NULL) {
Cudd_RecursiveDeref(dd, cubey);
Cudd_RecursiveDeref(dd, cubex);
FREE(colptr);
FREE(rowind);
return(0);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, cubex);
cubex = w;
u >>= 1;
}
minterm1 = Cudd_addApply(dd, Cudd_addTimes, cubey, cubex);
if (minterm1 == NULL) {
Cudd_RecursiveDeref(dd, cubey);
Cudd_RecursiveDeref(dd, cubex);
FREE(colptr);
FREE(rowind);
return(0);
}
cuddRef(minterm1);
Cudd_RecursiveDeref(dd, cubex);
w = Cudd_addApply(dd, Cudd_addPlus, *E, minterm1);
if (w == NULL) {
Cudd_RecursiveDeref(dd, cubey);
FREE(colptr);
FREE(rowind);
return(0);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, minterm1);
Cudd_RecursiveDeref(dd, *E);
*E = w;
}
Cudd_RecursiveDeref(dd, cubey);
}
FREE(colptr);
FREE(rowind);
/* Read right-hand sides */
for (j=0; j<nrhs; j++) {
v = j + (1<< (lny-1));
cubey = one; cuddRef(cubey);
for (nv = lny - 1; nv>=0; nv--) {
if (v & 1) {
w = Cudd_addApply(dd, Cudd_addTimes, cubey, ly[nv]);
} else {
w = Cudd_addApply(dd, Cudd_addTimes, cubey, lyn[nv]);
}
if (w == NULL) {
Cudd_RecursiveDeref(dd, cubey);
return(0);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, cubey);
cubey = w;
v >>= 1;
}
for (i=0; i<nrow; i++) {
u = i;
err = fscanf(fp, " %lf ", &val);
if (err == EOF || err != 1){
Cudd_RecursiveDeref(dd, cubey);
return(0);
}
/* Create new Constant node if necessary */
if (val == (double) 0.0) continue;
cubex = cuddUniqueConst(dd, (CUDD_VALUE_TYPE) val);
if (cubex == NULL) {
Cudd_RecursiveDeref(dd, cubey);
return(0);
}
cuddRef(cubex);
for (nv = lnx - 1; nv>=0; nv--) {
if (u & 1) {
w = Cudd_addApply(dd, Cudd_addTimes, cubex, lx[nv]);
} else {
w = Cudd_addApply(dd, Cudd_addTimes, cubex, lxn[nv]);
}
if (w == NULL) {
Cudd_RecursiveDeref(dd, cubey);
Cudd_RecursiveDeref(dd, cubex);
return(0);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, cubex);
cubex = w;
u >>= 1;
}
minterm1 = Cudd_addApply(dd, Cudd_addTimes, cubey, cubex);
if (minterm1 == NULL) {
Cudd_RecursiveDeref(dd, cubey);
Cudd_RecursiveDeref(dd, cubex);
return(0);
}
cuddRef(minterm1);
Cudd_RecursiveDeref(dd, cubex);
w = Cudd_addApply(dd, Cudd_addPlus, *E, minterm1);
if (w == NULL) {
Cudd_RecursiveDeref(dd, cubey);
return(0);
}
cuddRef(w);
Cudd_RecursiveDeref(dd, minterm1);
Cudd_RecursiveDeref(dd, *E);
*E = w;
}
Cudd_RecursiveDeref(dd, cubey);
}
return(1);
} /* end of Cudd_addHarwell */
/*---------------------------------------------------------------------------*/
/* Definition of internal functions */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Definition of static functions */
/*---------------------------------------------------------------------------*/