The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

853 lines
21 KiB

#include "yaml-cpp/node/node.h"
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/node/convert.h"
#include "yaml-cpp/node/detail/impl.h"
#include "yaml-cpp/node/emit.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/node/iterator.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <sstream>
namespace {
// malloc/free based allocator just for testing custom allocators on stl containers
template <class T>
class CustomAllocator : public std::allocator<T> {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template<class U> struct rebind { typedef CustomAllocator<U> other; };
CustomAllocator() : std::allocator<T>() {}
CustomAllocator(const CustomAllocator& other) : std::allocator<T>(other) {}
template<class U> CustomAllocator(const CustomAllocator<U>& other) : std::allocator<T>(other) {}
~CustomAllocator() {}
size_type max_size() const { return (std::numeric_limits<std::ptrdiff_t>::max)()/sizeof(T); }
pointer allocate(size_type num, const void* /*hint*/ = 0) {
if (num > std::size_t(-1) / sizeof(T)) throw std::bad_alloc();
return static_cast<pointer>(malloc(num * sizeof(T)));
}
void deallocate(pointer p, size_type /*num*/) { free(p); }
};
template <class T> using CustomVector = std::vector<T,CustomAllocator<T>>;
template <class T> using CustomList = std::list<T,CustomAllocator<T>>;
template <class K, class V, class C=std::less<K>> using CustomMap = std::map<K,V,C,CustomAllocator<std::pair<const K,V>>>;
template <class K, class V, class H=std::hash<K>, class P=std::equal_to<K>> using CustomUnorderedMap = std::unordered_map<K,V,H,P,CustomAllocator<std::pair<const K,V>>>;
} // anonymous namespace
using ::testing::AnyOf;
using ::testing::Eq;
#define EXPECT_THROW_REPRESENTATION_EXCEPTION(statement, message) \
ASSERT_THROW(statement, RepresentationException); \
try { \
statement; \
} catch (const RepresentationException& e) { \
EXPECT_EQ(e.msg, message); \
}
namespace YAML {
namespace {
TEST(NodeTest, SimpleScalar) {
Node node = Node("Hello, World!");
EXPECT_TRUE(node.IsScalar());
EXPECT_EQ("Hello, World!", node.as<std::string>());
}
TEST(NodeTest, IntScalar) {
Node node = Node(15);
EXPECT_TRUE(node.IsScalar());
EXPECT_EQ(15, node.as<int>());
}
TEST(NodeTest, SimpleAppendSequence) {
Node node;
node.push_back(10);
node.push_back("foo");
node.push_back("monkey");
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(3, node.size());
EXPECT_EQ(10, node[0].as<int>());
EXPECT_EQ("foo", node[1].as<std::string>());
EXPECT_EQ("monkey", node[2].as<std::string>());
EXPECT_TRUE(node.IsSequence());
}
TEST(NodeTest, SequenceElementRemoval) {
Node node;
node[0] = "a";
node[1] = "b";
node[2] = "c";
node.remove(1);
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(2, node.size());
EXPECT_EQ("a", node[0].as<std::string>());
EXPECT_EQ("c", node[1].as<std::string>());
}
TEST(NodeTest, SequenceElementRemovalSizeCheck) {
Node node;
node[0] = "a";
node[1] = "b";
node[2] = "c";
EXPECT_EQ(3, node.size());
node.remove(1);
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(2, node.size());
EXPECT_EQ("a", node[0].as<std::string>());
EXPECT_EQ("c", node[1].as<std::string>());
}
TEST(NodeTest, SequenceFirstElementRemoval) {
Node node;
node[0] = "a";
node[1] = "b";
node[2] = "c";
node.remove(0);
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(2, node.size());
EXPECT_EQ("b", node[0].as<std::string>());
EXPECT_EQ("c", node[1].as<std::string>());
}
TEST(NodeTest, SequenceFirstElementRemovalSizeCheck) {
Node node;
node[0] = "a";
node[1] = "b";
node[2] = "c";
EXPECT_EQ(3, node.size());
node.remove(0);
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(2, node.size());
EXPECT_EQ("b", node[0].as<std::string>());
EXPECT_EQ("c", node[1].as<std::string>());
}
TEST(NodeTest, SequenceLastElementRemoval) {
Node node;
node[0] = "a";
node[1] = "b";
node[2] = "c";
node.remove(2);
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(2, node.size());
EXPECT_EQ("a", node[0].as<std::string>());
EXPECT_EQ("b", node[1].as<std::string>());
}
TEST(NodeTest, SequenceLastElementRemovalSizeCheck) {
Node node;
node[0] = "a";
node[1] = "b";
node[2] = "c";
EXPECT_EQ(3, node.size());
node.remove(2);
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(2, node.size());
EXPECT_EQ("a", node[0].as<std::string>());
EXPECT_EQ("b", node[1].as<std::string>());
}
TEST(NodeTest, NodeAssignment) {
Node node1;
Node node2;
node1[1] = 1;
node1[2] = 2;
node1[3] = 3;
node2 = node1;
EXPECT_EQ(node1, node2);
EXPECT_EQ(node1[1], node2[1]);
EXPECT_EQ(node1[2], node2[2]);
EXPECT_EQ(node1[3], node2[3]);
}
TEST(NodeTest, EqualRepresentationAfterMoveAssignment) {
Node node1;
Node node2;
std::ostringstream ss1, ss2;
node1["foo"] = "bar";
ss1 << node1;
node2["hello"] = "world";
node2 = std::move(node1);
ss2 << node2;
EXPECT_FALSE(node2["hello"]);
EXPECT_EQ("bar", node2["foo"].as<std::string>());
EXPECT_EQ(ss1.str(), ss2.str());
}
TEST(NodeTest, MapElementRemoval) {
Node node;
node["foo"] = "bar";
node.remove("foo");
EXPECT_TRUE(!node["foo"]);
}
TEST(NodeTest, MapIntegerElementRemoval) {
Node node;
node[1] = "hello";
node[2] = 'c';
node["foo"] = "bar";
EXPECT_TRUE(node.IsMap());
node.remove(1);
EXPECT_TRUE(node.IsMap());
}
TEST(NodeTest, SimpleAssignSequence) {
Node node;
node[0] = 10;
node[1] = "foo";
node[2] = "monkey";
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(3, node.size());
EXPECT_EQ(10, node[0].as<int>());
EXPECT_EQ("foo", node[1].as<std::string>());
EXPECT_EQ("monkey", node[2].as<std::string>());
EXPECT_TRUE(node.IsSequence());
}
TEST(NodeTest, SimpleMap) {
Node node;
node["key"] = "value";
EXPECT_TRUE(node.IsMap());
EXPECT_EQ("value", node["key"].as<std::string>());
EXPECT_EQ(1, node.size());
}
TEST(NodeTest, MapWithUndefinedValues) {
Node node;
node["key"] = "value";
node["undefined"];
EXPECT_TRUE(node.IsMap());
EXPECT_EQ("value", node["key"].as<std::string>());
EXPECT_EQ(1, node.size());
node["undefined"] = "monkey";
EXPECT_EQ("monkey", node["undefined"].as<std::string>());
EXPECT_EQ(2, node.size());
}
TEST(NodeTest, SeqIntoMap) {
Node node;
node[0] = "test";
node[1];
node[2] = "value";
EXPECT_TRUE(node.IsMap());
EXPECT_EQ("test", node[0].as<std::string>());
EXPECT_EQ("value", node[2].as<std::string>());
EXPECT_EQ(2, node.size());
}
TEST(NodeTest, RemoveUnassignedNode) {
Node node(NodeType::Map);
node["key"];
node.remove("key");
EXPECT_EQ(0, node.size());
}
TEST(NodeTest, RemoveUnassignedNodeFromMap) {
Node node(NodeType::Map);
Node n;
node[n];
node.remove(n);
EXPECT_EQ(0, node.size());
}
TEST(NodeTest, MapForceInsert) {
Node node;
Node k1("k1");
Node k2("k2");
Node v1("v1");
Node v2("v2");
node[k1] = v1;
node[k2] = v1;
EXPECT_TRUE(node.IsMap());
EXPECT_EQ("v1", node["k1"].as<std::string>());
EXPECT_EQ("v1", node["k2"].as<std::string>());
EXPECT_EQ(2, node.size());
node.force_insert(k2, v2);
EXPECT_EQ("v1", node["k1"].as<std::string>());
EXPECT_EQ("v1", node["k2"].as<std::string>());
EXPECT_EQ(3, node.size());
}
TEST(NodeTest, UndefinedConstNodeWithFallback) {
Node node;
const Node& cn = node;
EXPECT_EQ(cn["undefined"].as<int>(3), 3);
}
TEST(NodeTest, MapIteratorWithUndefinedValues) {
Node node;
node["key"] = "value";
node["undefined"];
std::size_t count = 0;
for (const_iterator it = node.begin(); it != node.end(); ++it)
count++;
EXPECT_EQ(1, count);
}
TEST(NodeTest, ConstIteratorOnConstUndefinedNode) {
Node node;
const Node& cn = node;
const Node& undefinedCn = cn["undefined"];
std::size_t count = 0;
for (const_iterator it = undefinedCn.begin(); it != undefinedCn.end(); ++it) {
count++;
}
EXPECT_EQ(0, count);
}
TEST(NodeTest, IteratorOnConstUndefinedNode) {
Node node;
const Node& cn = node;
const Node& undefinedCn = cn["undefined"];
Node& nonConstUndefinedNode = const_cast<Node&>(undefinedCn);
std::size_t count = 0;
for (iterator it = nonConstUndefinedNode.begin();
it != nonConstUndefinedNode.end(); ++it) {
count++;
}
EXPECT_EQ(0, count);
}
TEST(NodeTest, InteratorOnSequence) {
Node node;
node[0] = "a";
node[1] = "b";
node[2] = "c";
EXPECT_TRUE(node.IsSequence());
std::size_t count = 0;
for (iterator it = node.begin(); it != node.end(); ++it)
{
EXPECT_FALSE(it->IsNull());
count++;
}
EXPECT_EQ(3, count);
}
TEST(NodeTest, ConstInteratorOnSequence) {
Node node;
node[0] = "a";
node[1] = "b";
node[2] = "c";
EXPECT_TRUE(node.IsSequence());
std::size_t count = 0;
for (const_iterator it = node.begin(); it != node.end(); ++it)
{
EXPECT_FALSE(it->IsNull());
count++;
}
EXPECT_EQ(3, count);
}
#if __cplusplus >= 201703L
TEST(NodeTest, StdStringViewAsKey) {
Node node;
std::string_view key = "username";
node[key] = "monkey";
EXPECT_EQ("monkey", node[key].as<std::string>());
}
#endif
TEST(NodeTest, SimpleSubkeys) {
Node node;
node["device"]["udid"] = "12345";
node["device"]["name"] = "iPhone";
node["device"]["os"] = "4.0";
node["username"] = "monkey";
EXPECT_EQ("12345", node["device"]["udid"].as<std::string>());
EXPECT_EQ("iPhone", node["device"]["name"].as<std::string>());
EXPECT_EQ("4.0", node["device"]["os"].as<std::string>());
EXPECT_EQ("monkey", node["username"].as<std::string>());
}
TEST(NodeTest, StdArray) {
std::array<int, 5> evens{{2, 4, 6, 8, 10}};
Node node;
node["evens"] = evens;
std::array<int, 5> actualEvens = node["evens"].as<std::array<int, 5>>();
EXPECT_EQ(evens, actualEvens);
}
TEST(NodeTest, StdArrayWrongSize) {
std::array<int, 3> evens{{2, 4, 6}};
Node node;
node["evens"] = evens;
EXPECT_THROW_REPRESENTATION_EXCEPTION(
(node["evens"].as<std::array<int, 5>>()), ErrorMsg::BAD_CONVERSION);
}
TEST(NodeTest, StdValrray) {
std::valarray<int> evens{{2, 4, 6, 8, 10}};
Node node;
node["evens"] = evens;
std::valarray<int> actualEvens = node["evens"].as<std::valarray<int>>();
for (int i = 0; i < evens.size(); ++i) {
EXPECT_EQ(evens[i], actualEvens[i]);
}
}
TEST(NodeTest, StdVector) {
std::vector<int> primes;
primes.push_back(2);
primes.push_back(3);
primes.push_back(5);
primes.push_back(7);
primes.push_back(11);
primes.push_back(13);
Node node;
node["primes"] = primes;
EXPECT_EQ(primes, node["primes"].as<std::vector<int>>());
}
TEST(NodeTest, StdVectorWithCustomAllocator) {
CustomVector<int> primes;
primes.push_back(2);
primes.push_back(3);
primes.push_back(5);
primes.push_back(7);
primes.push_back(11);
primes.push_back(13);
Node node;
node["primes"] = primes;
EXPECT_EQ(primes, node["primes"].as<CustomVector<int>>());
}
TEST(NodeTest, StdList) {
std::list<int> primes;
primes.push_back(2);
primes.push_back(3);
primes.push_back(5);
primes.push_back(7);
primes.push_back(11);
primes.push_back(13);
Node node;
node["primes"] = primes;
EXPECT_EQ(primes, node["primes"].as<std::list<int>>());
}
TEST(NodeTest, StdListWithCustomAllocator) {
CustomList<int> primes;
primes.push_back(2);
primes.push_back(3);
primes.push_back(5);
primes.push_back(7);
primes.push_back(11);
primes.push_back(13);
Node node;
node["primes"] = primes;
EXPECT_EQ(primes, node["primes"].as<CustomList<int>>());
}
TEST(NodeTest, StdMap) {
std::map<int, int> squares;
squares[0] = 0;
squares[1] = 1;
squares[2] = 4;
squares[3] = 9;
squares[4] = 16;
Node node;
node["squares"] = squares;
std::map<int, int> actualSquares = node["squares"].as<std::map<int, int>>();
EXPECT_EQ(squares, actualSquares);
}
TEST(NodeTest, StdMapWithCustomAllocator) {
CustomMap<int,int> squares;
squares[0] = 0;
squares[1] = 1;
squares[2] = 4;
squares[3] = 9;
squares[4] = 16;
Node node;
node["squares"] = squares;
CustomMap<int,int> actualSquares = node["squares"].as<CustomMap<int,int>>();
EXPECT_EQ(squares, actualSquares);
}
TEST(NodeTest, StdUnorderedMap) {
std::unordered_map<int, int> squares;
squares[0] = 0;
squares[1] = 1;
squares[2] = 4;
squares[3] = 9;
squares[4] = 16;
Node node;
node["squares"] = squares;
std::unordered_map<int, int> actualSquares = node["squares"].as<std::unordered_map<int, int>>();
EXPECT_EQ(squares, actualSquares);
}
TEST(NodeTest, StdUnorderedMapWithCustomAllocator) {
CustomUnorderedMap<int,int> squares;
squares[0] = 0;
squares[1] = 1;
squares[2] = 4;
squares[3] = 9;
squares[4] = 16;
Node node;
node["squares"] = squares;
CustomUnorderedMap<int,int> actualSquares = node["squares"].as<CustomUnorderedMap<int,int>>();
EXPECT_EQ(squares, actualSquares);
}
TEST(NodeTest, StdPair) {
std::pair<int, std::string> p;
p.first = 5;
p.second = "five";
Node node;
node["pair"] = p;
std::pair<int, std::string> actualP =
node["pair"].as<std::pair<int, std::string>>();
EXPECT_EQ(p, actualP);
}
TEST(NodeTest, SimpleAlias) {
Node node;
node["foo"] = "value";
node["bar"] = node["foo"];
EXPECT_EQ("value", node["foo"].as<std::string>());
EXPECT_EQ("value", node["bar"].as<std::string>());
EXPECT_EQ(node["bar"], node["foo"]);
EXPECT_EQ(2, node.size());
}
TEST(NodeTest, AliasAsKey) {
Node node;
node["foo"] = "value";
Node value = node["foo"];
node[value] = "foo";
EXPECT_EQ("value", node["foo"].as<std::string>());
EXPECT_EQ("foo", node[value].as<std::string>());
EXPECT_EQ("foo", node["value"].as<std::string>());
EXPECT_EQ(2, node.size());
}
TEST(NodeTest, SelfReferenceSequence) {
Node node;
node[0] = node;
EXPECT_TRUE(node.IsSequence());
EXPECT_EQ(1, node.size());
EXPECT_EQ(node, node[0]);
EXPECT_EQ(node, node[0][0]);
EXPECT_EQ(node[0], node[0][0]);
}
TEST(NodeTest, ValueSelfReferenceMap) {
Node node;
node["key"] = node;
EXPECT_TRUE(node.IsMap());
EXPECT_EQ(1, node.size());
EXPECT_EQ(node, node["key"]);
EXPECT_EQ(node, node["key"]["key"]);
EXPECT_EQ(node["key"], node["key"]["key"]);
}
TEST(NodeTest, KeySelfReferenceMap) {
Node node;
node[node] = "value";
EXPECT_TRUE(node.IsMap());
EXPECT_EQ(1, node.size());
EXPECT_EQ("value", node[node].as<std::string>());
}
TEST(NodeTest, SelfReferenceMap) {
Node node;
node[node] = node;
EXPECT_TRUE(node.IsMap());
EXPECT_EQ(1, node.size());
EXPECT_EQ(node, node[node]);
EXPECT_EQ(node, node[node][node]);
EXPECT_EQ(node[node], node[node][node]);
}
TEST(NodeTest, TempMapVariable) {
Node node;
Node tmp = node["key"];
tmp = "value";
EXPECT_TRUE(node.IsMap());
EXPECT_EQ(1, node.size());
EXPECT_EQ("value", node["key"].as<std::string>());
}
TEST(NodeTest, TempMapVariableAlias) {
Node node;
Node tmp = node["key"];
tmp = node["other"];
node["other"] = "value";
EXPECT_TRUE(node.IsMap());
EXPECT_EQ(2, node.size());
EXPECT_EQ("value", node["key"].as<std::string>());
EXPECT_EQ("value", node["other"].as<std::string>());
EXPECT_EQ(node["key"], node["other"]);
}
TEST(NodeTest, Bool) {
Node node;
node[true] = false;
EXPECT_TRUE(node.IsMap());
EXPECT_EQ(false, node[true].as<bool>());
}
TEST(NodeTest, AutoBoolConversion) {
#ifdef _MSC_VER
#pragma warning(disable : 4800)
#endif
Node node;
node["foo"] = "bar";
EXPECT_TRUE(static_cast<bool>(node["foo"]));
EXPECT_TRUE(!node["monkey"]);
EXPECT_TRUE(!!node["foo"]);
}
TEST(NodeTest, FloatingPrecisionFloat) {
const float x = 0.123456789;
Node node = Node(x);
EXPECT_EQ(x, node.as<float>());
}
TEST(NodeTest, FloatingPrecisionPositiveInfinityFloat) {
if (!std::numeric_limits<float>::has_infinity) {
return;
}
const float x = std::numeric_limits<float>::infinity();
Node node = Node(x);
EXPECT_EQ(x, node.as<float>());
}
TEST(NodeTest, FloatingPrecisionNegativeInfinityFloat) {
if (!std::numeric_limits<float>::has_infinity) {
return;
}
const float x = -std::numeric_limits<float>::infinity();
Node node = Node(x);
EXPECT_EQ(x, node.as<float>());
}
TEST(NodeTest, FloatingPrecisionNanFloat) {
if (!std::numeric_limits<float>::has_quiet_NaN) {
return;
}
const float x = std::numeric_limits<float>::quiet_NaN();
Node node = Node(x);
EXPECT_TRUE(std::isnan(node.as<float>()));
}
TEST(NodeTest, FloatingPrecisionDouble) {
const double x = 0.123456789;
Node node = Node(x);
EXPECT_EQ(x, node.as<double>());
}
TEST(NodeTest, FloatingPrecisionPositiveInfinityDouble) {
if (!std::numeric_limits<double>::has_infinity) {
return;
}
const double x = std::numeric_limits<double>::infinity();
Node node = Node(x);
EXPECT_EQ(x, node.as<float>());
}
TEST(NodeTest, FloatingPrecisionNegativeInfinityDouble) {
if (!std::numeric_limits<double>::has_infinity) {
return;
}
const double x = -std::numeric_limits<double>::infinity();
Node node = Node(x);
EXPECT_EQ(x, node.as<double>());
}
TEST(NodeTest, FloatingPrecisionNanDouble) {
if (!std::numeric_limits<double>::has_quiet_NaN) {
return;
}
const double x = std::numeric_limits<double>::quiet_NaN();
Node node = Node(x);
EXPECT_TRUE(std::isnan(node.as<double>()));
}
TEST(NodeTest, SpaceChar) {
Node node = Node(' ');
EXPECT_EQ(' ', node.as<char>());
}
TEST(NodeTest, CloneNull) {
Node node;
Node clone = Clone(node);
EXPECT_EQ(NodeType::Null, clone.Type());
}
TEST(NodeTest, KeyNodeExitsScope) {
Node node;
{
Node temp("Hello, world");
node[temp] = 0;
}
for (Node::const_iterator it = node.begin(); it != node.end(); ++it) {
(void)it;
}
}
TEST(NodeTest, DefaultNodeStyle) {
Node node;
EXPECT_EQ(EmitterStyle::Default, node.Style());
}
TEST(NodeTest, AccessNonexistentKeyOnConstNode) {
YAML::Node node;
node["3"] = "4";
const YAML::Node& other = node;
ASSERT_FALSE(other["5"]);
}
class NodeEmitterTest : public ::testing::Test {
protected:
void ExpectOutput(const std::string& output, const Node& node) {
Emitter emitter;
emitter << node;
ASSERT_TRUE(emitter.good());
EXPECT_EQ(output, emitter.c_str());
}
void ExpectAnyOutput(const Node& node, const std::string& output1,
const std::string& output2) {
Emitter emitter;
emitter << node;
ASSERT_TRUE(emitter.good());
EXPECT_THAT(emitter.c_str(), AnyOf(Eq(output1), Eq(output2)));
}
};
TEST_F(NodeEmitterTest, SimpleFlowSeqNode) {
Node node;
node.SetStyle(EmitterStyle::Flow);
node.push_back(1.5);
node.push_back(2.25);
node.push_back(3.125);
ExpectOutput("[1.5, 2.25, 3.125]", node);
}
TEST_F(NodeEmitterTest, NestFlowSeqNode) {
Node node, cell0, cell1;
cell0.push_back(1.5);
cell0.push_back(2.25);
cell0.push_back(3.125);
cell1.push_back(4.5);
cell1.push_back(5.25);
cell1.push_back(6.125);
node.SetStyle(EmitterStyle::Flow);
node.push_back(cell0);
node.push_back(cell1);
ExpectOutput("[[1.5, 2.25, 3.125], [4.5, 5.25, 6.125]]", node);
}
TEST_F(NodeEmitterTest, MixBlockFlowSeqNode) {
Node node, cell0, cell1;
cell0.SetStyle(EmitterStyle::Flow);
cell0.push_back(1.5);
cell0.push_back(2.25);
cell0.push_back(3.125);
cell1.push_back(4.5);
cell1.push_back(5.25);
cell1.push_back(6.125);
node.SetStyle(EmitterStyle::Block);
node.push_back(cell0);
node.push_back(cell1);
ExpectOutput("- [1.5, 2.25, 3.125]\n-\n - 4.5\n - 5.25\n - 6.125", node);
}
TEST_F(NodeEmitterTest, NestBlockFlowMapListNode) {
Node node, mapNode, blockNode;
node.push_back(1.5);
node.push_back(2.25);
node.push_back(3.125);
mapNode.SetStyle(EmitterStyle::Flow);
mapNode["position"] = node;
blockNode.push_back(1.0625);
blockNode.push_back(mapNode);
ExpectOutput("- 1.0625\n- {position: [1.5, 2.25, 3.125]}", blockNode);
}
TEST_F(NodeEmitterTest, NestBlockMixMapListNode) {
Node node, mapNode, blockNode;
node.push_back(1.5);
node.push_back(2.25);
node.push_back(3.125);
mapNode.SetStyle(EmitterStyle::Flow);
mapNode["position"] = node;
blockNode["scalar"] = 1.0625;
blockNode["object"] = mapNode;
ExpectAnyOutput(blockNode,
"scalar: 1.0625\nobject: {position: [1.5, 2.25, 3.125]}",
"object: {position: [1.5, 2.25, 3.125]}\nscalar: 1.5");
}
TEST_F(NodeEmitterTest, NestBlockMapListNode) {
Node node, mapNode;
node.push_back(1.5);
node.push_back(2.25);
node.push_back(3.125);
mapNode.SetStyle(EmitterStyle::Block);
mapNode["position"] = node;
ExpectOutput("position:\n - 1.5\n - 2.25\n - 3.125", mapNode);
}
TEST_F(NodeEmitterTest, NestFlowMapListNode) {
Node node, mapNode;
node.push_back(1.5);
node.push_back(2.25);
node.push_back(3.125);
mapNode.SetStyle(EmitterStyle::Flow);
mapNode["position"] = node;
ExpectOutput("{position: [1.5, 2.25, 3.125]}", mapNode);
}
}
}