The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

115 lines
3.4 KiB

import gymnasium as gym
import minigrid
from ray.tune import register_env
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.algorithms.dqn.dqn import DQNConfig
from ray.tune.logger import pretty_print
from ray.rllib.models import ModelCatalog
from torch_action_mask_model import TorchActionMaskModel
from rllibutils import OneHotShieldingWrapper, MiniGridShieldingWrapper, shielding_env_creater
from utils import MiniGridShieldHandler, create_shield_query, parse_arguments, create_log_dir, ShieldingConfig
from callbacks import CustomCallback
from ray.tune.logger import TBXLogger
def register_minigrid_shielding_env(args):
env_name = "mini-grid-shielding"
register_env(env_name, shielding_env_creater)
ModelCatalog.register_custom_model(
"shielding_model",
TorchActionMaskModel
)
def ppo(args):
train_batch_size = 4000
register_minigrid_shielding_env(args)
config = (PPOConfig()
.rollouts(num_rollout_workers=args.workers)
.resources(num_gpus=0)
.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training})
.framework("torch")
.callbacks(CustomCallback)
.rl_module(_enable_rl_module_api = False)
.debugging(logger_config={
"type": TBXLogger,
"logdir": create_log_dir(args)
})
# .exploration(exploration_config={"exploration_fraction": 0.1})
.training(_enable_learner_api=False ,
model={"custom_model": "shielding_model"},
train_batch_size=train_batch_size))
# config.entropy_coeff = 0.05
algo =(
config.build()
)
iterations = int((args.steps / train_batch_size)) + 1
for i in range(iterations):
result = algo.train()
print(pretty_print(result))
if i % 5 == 0:
checkpoint_dir = algo.save()
print(f"Checkpoint saved in directory {checkpoint_dir}")
algo.save()
def dqn(args):
train_batch_size = 4000
register_minigrid_shielding_env(args)
config = DQNConfig()
config = config.resources(num_gpus=0)
config = config.rollouts(num_rollout_workers=args.workers)
config = config.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args })
config = config.framework("torch")
config = config.callbacks(CustomCallback)
config = config.rl_module(_enable_rl_module_api = False)
config = config.debugging(logger_config={
"type": TBXLogger,
"logdir": create_log_dir(args)
})
config = config.training(hiddens=[], dueling=False, train_batch_size=train_batch_size, model={
"custom_model": "shielding_model"
})
algo = (
config.build()
)
iterations = int((args.steps / train_batch_size)) + 1
for i in range(iterations):
result = algo.train()
print(pretty_print(result))
if i % 5 == 0:
print("Saving checkpoint")
checkpoint_dir = algo.save()
print(f"Checkpoint saved in directory {checkpoint_dir}")
def main():
import argparse
args = parse_arguments(argparse)
if args.algorithm == "PPO":
ppo(args)
elif args.algorithm == "DQN":
dqn(args)
if __name__ == '__main__':
main()