The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

2988 lines
110 KiB

// ----------------------------------------------------------------------
// Copyright (c) 2016, Gregory Popovitch - greg7mdp@gmail.com
// All rights reserved.
//
// This work is derived from Google's sparsehash library
//
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ----------------------------------------------------------------------
#ifdef _MSC_VER
#pragma warning( disable : 4820 ) // '6' bytes padding added after data member...
#pragma warning( disable : 4710 ) // function not inlined
#pragma warning( disable : 4514 ) // unreferenced inline function has been removed
#pragma warning( disable : 4996 ) // 'fopen': This function or variable may be unsafe
#endif
#include <sparsepp/spp.h>
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // conditional expression is constant
#pragma warning(push, 0)
#endif
#include <math.h>
#include <stddef.h> // for size_t
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <set>
#include <sstream>
#include <typeinfo> // for class typeinfo (returned by typeid)
#include <vector>
#include <stdexcept> // for length_error
namespace sparsehash_internal = SPP_NAMESPACE::sparsehash_internal;
using SPP_NAMESPACE::sparsetable;
using SPP_NAMESPACE::sparse_hashtable;
using SPP_NAMESPACE::sparse_hash_map;
using SPP_NAMESPACE::sparse_hash_set;
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
#ifndef _MSC_VER // windows defines its own version
#define _strdup strdup
#ifdef __MINGW32__ // mingw has trouble writing to /tmp
static std::string TmpFile(const char* basename)
{
return std::string("./#") + basename;
}
#endif
#else
#pragma warning(disable : 4996)
#define snprintf sprintf_s
#define WIN32_LEAN_AND_MEAN /* We always want minimal includes */
#include <windows.h>
std::string TmpFile(const char* basename)
{
char tmppath_buffer[1024];
int tmppath_len = GetTempPathA(sizeof(tmppath_buffer), tmppath_buffer);
if (tmppath_len <= 0 || tmppath_len >= sizeof(tmppath_buffer))
return basename; // an error, so just bail on tmppath
sprintf_s(tmppath_buffer + tmppath_len, 1024 - tmppath_len, "\\%s", basename);
return tmppath_buffer;
}
#endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// ---------------------------------------------------------------------
// This is the "default" interface, which just passes everything
// through to the underlying hashtable. You'll need to subclass it to
// specialize behavior for an individual hashtable.
// ---------------------------------------------------------------------
template <class HT>
class BaseHashtableInterface
{
public:
virtual ~BaseHashtableInterface() {}
typedef typename HT::key_type key_type;
typedef typename HT::value_type value_type;
typedef typename HT::hasher hasher;
typedef typename HT::key_equal key_equal;
typedef typename HT::allocator_type allocator_type;
typedef typename HT::size_type size_type;
typedef typename HT::difference_type difference_type;
typedef typename HT::pointer pointer;
typedef typename HT::const_pointer const_pointer;
typedef typename HT::reference reference;
typedef typename HT::const_reference const_reference;
class const_iterator;
class iterator : public HT::iterator
{
public:
iterator() : parent_(NULL) { } // this allows code like "iterator it;"
iterator(typename HT::iterator it, const BaseHashtableInterface* parent)
: HT::iterator(it), parent_(parent) { }
key_type key() { return parent_->it_to_key(*this); }
private:
friend class BaseHashtableInterface::const_iterator; // for its ctor
const BaseHashtableInterface* parent_;
};
class const_iterator : public HT::const_iterator
{
public:
const_iterator() : parent_(NULL) { }
const_iterator(typename HT::const_iterator it,
const BaseHashtableInterface* parent)
: HT::const_iterator(it), parent_(parent) { }
const_iterator(typename HT::iterator it,
BaseHashtableInterface* parent)
: HT::const_iterator(it), parent_(parent) { }
// The parameter type here *should* just be "iterator", but MSVC
// gets confused by that, so I'm overly specific.
const_iterator(typename BaseHashtableInterface<HT>::iterator it)
: HT::const_iterator(it), parent_(it.parent_) { }
key_type key() { return parent_->it_to_key(*this); }
private:
const BaseHashtableInterface* parent_;
};
class const_local_iterator;
class local_iterator : public HT::local_iterator
{
public:
local_iterator() : parent_(NULL) { }
local_iterator(typename HT::local_iterator it,
const BaseHashtableInterface* parent)
: HT::local_iterator(it), parent_(parent) { }
key_type key() { return parent_->it_to_key(*this); }
private:
friend class BaseHashtableInterface::const_local_iterator; // for its ctor
const BaseHashtableInterface* parent_;
};
class const_local_iterator : public HT::const_local_iterator
{
public:
const_local_iterator() : parent_(NULL) { }
const_local_iterator(typename HT::const_local_iterator it,
const BaseHashtableInterface* parent)
: HT::const_local_iterator(it), parent_(parent) { }
const_local_iterator(typename HT::local_iterator it,
BaseHashtableInterface* parent)
: HT::const_local_iterator(it), parent_(parent) { }
const_local_iterator(local_iterator it)
: HT::const_local_iterator(it), parent_(it.parent_) { }
key_type key() { return parent_->it_to_key(*this); }
private:
const BaseHashtableInterface* parent_;
};
iterator begin() { return iterator(ht_.begin(), this); }
iterator end() { return iterator(ht_.end(), this); }
const_iterator begin() const { return const_iterator(ht_.begin(), this); }
const_iterator end() const { return const_iterator(ht_.end(), this); }
local_iterator begin(size_type i) { return local_iterator(ht_.begin(i), this); }
local_iterator end(size_type i) { return local_iterator(ht_.end(i), this); }
const_local_iterator begin(size_type i) const { return const_local_iterator(ht_.begin(i), this); }
const_local_iterator end(size_type i) const { return const_local_iterator(ht_.end(i), this); }
hasher hash_funct() const { return ht_.hash_funct(); }
hasher hash_function() const { return ht_.hash_function(); }
key_equal key_eq() const { return ht_.key_eq(); }
allocator_type get_allocator() const { return ht_.get_allocator(); }
BaseHashtableInterface(size_type expected_max_items_in_table,
const hasher& hf,
const key_equal& eql,
const allocator_type& alloc)
: ht_(expected_max_items_in_table, hf, eql, alloc) { }
// Not all ht_'s support this constructor: you should only call it
// from a subclass if you know your ht supports it. Otherwise call
// the previous constructor, followed by 'insert(f, l);'.
template <class InputIterator>
BaseHashtableInterface(InputIterator f, InputIterator l,
size_type expected_max_items_in_table,
const hasher& hf,
const key_equal& eql,
const allocator_type& alloc)
: ht_(f, l, expected_max_items_in_table, hf, eql, alloc) {
}
// This is the version of the constructor used by dense_*, which
// requires an empty key in the constructor.
template <class InputIterator>
BaseHashtableInterface(InputIterator f, InputIterator l, key_type empty_k,
size_type expected_max_items_in_table,
const hasher& hf,
const key_equal& eql,
const allocator_type& alloc)
: ht_(f, l, empty_k, expected_max_items_in_table, hf, eql, alloc) {
}
// This is the constructor appropriate for {dense,sparse}hashtable.
template <class ExtractKey, class SetKey>
BaseHashtableInterface(size_type expected_max_items_in_table,
const hasher& hf,
const key_equal& eql,
const ExtractKey& ek,
const SetKey& sk,
const allocator_type& alloc)
: ht_(expected_max_items_in_table, hf, eql, ek, sk, alloc) { }
void clear() { ht_.clear(); }
void swap(BaseHashtableInterface& other) { ht_.swap(other.ht_); }
// Only part of the API for some hashtable implementations.
void clear_no_resize() { clear(); }
size_type size() const { return ht_.size(); }
size_type max_size() const { return ht_.max_size(); }
bool empty() const { return ht_.empty(); }
size_type bucket_count() const { return ht_.bucket_count(); }
size_type max_bucket_count() const { return ht_.max_bucket_count(); }
size_type bucket_size(size_type i) const {
return ht_.bucket_size(i);
}
size_type bucket(const key_type& key) const {
return ht_.bucket(key);
}
float load_factor() const { return ht_.load_factor(); }
float max_load_factor() const { return ht_.max_load_factor(); }
void max_load_factor(float grow) { ht_.max_load_factor(grow); }
float min_load_factor() const { return ht_.min_load_factor(); }
void min_load_factor(float shrink) { ht_.min_load_factor(shrink); }
void set_resizing_parameters(float shrink, float grow) {
ht_.set_resizing_parameters(shrink, grow);
}
void resize(size_type hint) { ht_.resize(hint); }
void rehash(size_type hint) { ht_.rehash(hint); }
iterator find(const key_type& key) {
return iterator(ht_.find(key), this);
}
const_iterator find(const key_type& key) const {
return const_iterator(ht_.find(key), this);
}
// Rather than try to implement operator[], which doesn't make much
// sense for set types, we implement two methods: bracket_equal and
// bracket_assign. By default, bracket_equal(a, b) returns true if
// ht[a] == b, and false otherwise. (Note that this follows
// operator[] semantics exactly, including inserting a if it's not
// already in the hashtable, before doing the equality test.) For
// sets, which have no operator[], b is ignored, and bracket_equal
// returns true if key is in the set and false otherwise.
// bracket_assign(a, b) is equivalent to ht[a] = b. For sets, b is
// ignored, and bracket_assign is equivalent to ht.insert(a).
template<typename AssignValue>
bool bracket_equal(const key_type& key, const AssignValue& expected) {
return ht_[key] == expected;
}
template<typename AssignValue>
void bracket_assign(const key_type& key, const AssignValue& value) {
ht_[key] = value;
}
size_type count(const key_type& key) const { return ht_.count(key); }
std::pair<iterator, iterator> equal_range(const key_type& key)
{
std::pair<typename HT::iterator, typename HT::iterator> r
= ht_.equal_range(key);
return std::pair<iterator, iterator>(iterator(r.first, this),
iterator(r.second, this));
}
std::pair<const_iterator, const_iterator> equal_range(const key_type& key) const
{
std::pair<typename HT::const_iterator, typename HT::const_iterator> r
= ht_.equal_range(key);
return std::pair<const_iterator, const_iterator>(
const_iterator(r.first, this), const_iterator(r.second, this));
}
const_iterator random_element(class ACMRandom* r) const {
return const_iterator(ht_.random_element(r), this);
}
iterator random_element(class ACMRandom* r) {
return iterator(ht_.random_element(r), this);
}
std::pair<iterator, bool> insert(const value_type& obj) {
std::pair<typename HT::iterator, bool> r = ht_.insert(obj);
return std::pair<iterator, bool>(iterator(r.first, this), r.second);
}
template <class InputIterator>
void insert(InputIterator f, InputIterator l) {
ht_.insert(f, l);
}
void insert(typename HT::const_iterator f, typename HT::const_iterator l) {
ht_.insert(f, l);
}
iterator insert(typename HT::iterator, const value_type& obj) {
return iterator(insert(obj).first, this);
}
// These will commonly need to be overridden by the child.
void set_empty_key(const key_type& k) { ht_.set_empty_key(k); }
void clear_empty_key() { ht_.clear_empty_key(); }
key_type empty_key() const { return ht_.empty_key(); }
void set_deleted_key(const key_type& k) { ht_.set_deleted_key(k); }
void clear_deleted_key() { ht_.clear_deleted_key(); }
size_type erase(const key_type& key) { return ht_.erase(key); }
void erase(typename HT::iterator it) { ht_.erase(it); }
void erase(typename HT::iterator f, typename HT::iterator l) {
ht_.erase(f, l);
}
bool operator==(const BaseHashtableInterface& other) const {
return ht_ == other.ht_;
}
bool operator!=(const BaseHashtableInterface& other) const {
return ht_ != other.ht_;
}
template <typename ValueSerializer, typename OUTPUT>
bool serialize(ValueSerializer serializer, OUTPUT *fp) {
return ht_.serialize(serializer, fp);
}
template <typename ValueSerializer, typename INPUT>
bool unserialize(ValueSerializer serializer, INPUT *fp) {
return ht_.unserialize(serializer, fp);
}
template <typename OUTPUT>
bool write_metadata(OUTPUT *fp) {
return ht_.write_metadata(fp);
}
template <typename INPUT>
bool read_metadata(INPUT *fp) {
return ht_.read_metadata(fp);
}
template <typename OUTPUT>
bool write_nopointer_data(OUTPUT *fp) {
return ht_.write_nopointer_data(fp);
}
template <typename INPUT>
bool read_nopointer_data(INPUT *fp) {
return ht_.read_nopointer_data(fp);
}
// low-level stats
int num_table_copies() const { return (int)ht_.num_table_copies(); }
// Not part of the hashtable API, but is provided to make testing easier.
virtual key_type get_key(const value_type& value) const = 0;
// All subclasses should define get_data(value_type) as well. I don't
// provide an abstract-virtual definition here, because the return type
// differs between subclasses (not all subclasses define data_type).
//virtual data_type get_data(const value_type& value) const = 0;
//virtual data_type default_data() const = 0;
// These allow introspection into the interface. "Supports" means
// that the implementation of this functionality isn't a noop.
virtual bool supports_clear_no_resize() const = 0;
virtual bool supports_empty_key() const = 0;
virtual bool supports_deleted_key() const = 0;
virtual bool supports_brackets() const = 0; // has a 'real' operator[]
virtual bool supports_readwrite() const = 0;
virtual bool supports_num_table_copies() const = 0;
virtual bool supports_serialization() const = 0;
protected:
HT ht_;
// These are what subclasses have to define to get class-specific behavior
virtual key_type it_to_key(const iterator& it) const = 0;
virtual key_type it_to_key(const const_iterator& it) const = 0;
virtual key_type it_to_key(const local_iterator& it) const = 0;
virtual key_type it_to_key(const const_local_iterator& it) const = 0;
};
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class Key, class T,
class HashFcn = SPP_HASH_CLASS<Key>,
class EqualKey = std::equal_to<Key>,
class Alloc = SPP_DEFAULT_ALLOCATOR<std::pair<const Key, T> > >
class HashtableInterface_SparseHashMap
: public BaseHashtableInterface< sparse_hash_map<Key, T, HashFcn,
EqualKey, Alloc> >
{
private:
typedef sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc> ht;
typedef BaseHashtableInterface<ht> p; // parent
public:
explicit HashtableInterface_SparseHashMap(
typename p::size_type expected_max_items = 0,
const typename p::hasher& hf = typename p::hasher(),
const typename p::key_equal& eql = typename p::key_equal(),
const typename p::allocator_type& alloc = typename p::allocator_type())
: BaseHashtableInterface<ht>(expected_max_items, hf, eql, alloc) { }
template <class InputIterator>
HashtableInterface_SparseHashMap(
InputIterator f, InputIterator l,
typename p::size_type expected_max_items = 0,
const typename p::hasher& hf = typename p::hasher(),
const typename p::key_equal& eql = typename p::key_equal(),
const typename p::allocator_type& alloc = typename p::allocator_type())
: BaseHashtableInterface<ht>(f, l, expected_max_items, hf, eql, alloc) { }
typename p::key_type get_key(const typename p::value_type& value) const {
return value.first;
}
typename ht::data_type get_data(const typename p::value_type& value) const {
return value.second;
}
typename ht::data_type default_data() const {
return typename ht::data_type();
}
bool supports_clear_no_resize() const { return false; }
bool supports_empty_key() const { return false; }
bool supports_deleted_key() const { return false; }
bool supports_brackets() const { return true; }
bool supports_readwrite() const { return true; }
bool supports_num_table_copies() const { return false; }
bool supports_serialization() const { return true; }
void set_empty_key(const typename p::key_type&) { }
void clear_empty_key() { }
typename p::key_type empty_key() const { return typename p::key_type(); }
int num_table_copies() const { return 0; }
typedef typename ht::NopointerSerializer NopointerSerializer;
protected:
template <class K2, class T2, class H2, class E2, class A2>
friend void swap(HashtableInterface_SparseHashMap<K2,T2,H2,E2,A2>& a,
HashtableInterface_SparseHashMap<K2,T2,H2,E2,A2>& b);
typename p::key_type it_to_key(const typename p::iterator& it) const {
return it->first;
}
typename p::key_type it_to_key(const typename p::const_iterator& it) const {
return it->first;
}
typename p::key_type it_to_key(const typename p::local_iterator& it) const {
return it->first;
}
typename p::key_type it_to_key(const typename p::const_local_iterator& it) const {
return it->first;
}
};
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class K, class T, class H, class E, class A>
void swap(HashtableInterface_SparseHashMap<K,T,H,E,A>& a,
HashtableInterface_SparseHashMap<K,T,H,E,A>& b)
{
swap(a.ht_, b.ht_);
}
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class Value,
class HashFcn = SPP_HASH_CLASS<Value>,
class EqualKey = std::equal_to<Value>,
class Alloc = SPP_DEFAULT_ALLOCATOR<Value> >
class HashtableInterface_SparseHashSet
: public BaseHashtableInterface< sparse_hash_set<Value, HashFcn,
EqualKey, Alloc> >
{
private:
typedef sparse_hash_set<Value, HashFcn, EqualKey, Alloc> ht;
typedef BaseHashtableInterface<ht> p; // parent
public:
explicit HashtableInterface_SparseHashSet(
typename p::size_type expected_max_items = 0,
const typename p::hasher& hf = typename p::hasher(),
const typename p::key_equal& eql = typename p::key_equal(),
const typename p::allocator_type& alloc = typename p::allocator_type())
: BaseHashtableInterface<ht>(expected_max_items, hf, eql, alloc) { }
template <class InputIterator>
HashtableInterface_SparseHashSet(
InputIterator f, InputIterator l,
typename p::size_type expected_max_items = 0,
const typename p::hasher& hf = typename p::hasher(),
const typename p::key_equal& eql = typename p::key_equal(),
const typename p::allocator_type& alloc = typename p::allocator_type())
: BaseHashtableInterface<ht>(f, l, expected_max_items, hf, eql, alloc) { }
template<typename AssignValue>
bool bracket_equal(const typename p::key_type& key, const AssignValue&) {
return this->ht_.find(key) != this->ht_.end();
}
template<typename AssignValue>
void bracket_assign(const typename p::key_type& key, const AssignValue&) {
this->ht_.insert(key);
}
typename p::key_type get_key(const typename p::value_type& value) const {
return value;
}
// For sets, the only 'data' is that an item is actually inserted.
bool get_data(const typename p::value_type&) const {
return true;
}
bool default_data() const {
return true;
}
bool supports_clear_no_resize() const { return false; }
bool supports_empty_key() const { return false; }
bool supports_deleted_key() const { return false; }
bool supports_brackets() const { return false; }
bool supports_readwrite() const { return true; }
bool supports_num_table_copies() const { return false; }
bool supports_serialization() const { return true; }
void set_empty_key(const typename p::key_type&) { }
void clear_empty_key() { }
typename p::key_type empty_key() const { return typename p::key_type(); }
int num_table_copies() const { return 0; }
typedef typename ht::NopointerSerializer NopointerSerializer;
protected:
template <class K2, class H2, class E2, class A2>
friend void swap(HashtableInterface_SparseHashSet<K2,H2,E2,A2>& a,
HashtableInterface_SparseHashSet<K2,H2,E2,A2>& b);
typename p::key_type it_to_key(const typename p::iterator& it) const {
return *it;
}
typename p::key_type it_to_key(const typename p::const_iterator& it) const {
return *it;
}
typename p::key_type it_to_key(const typename p::local_iterator& it) const {
return *it;
}
typename p::key_type it_to_key(const typename p::const_local_iterator& it)
const {
return *it;
}
};
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class K, class H, class E, class A>
void swap(HashtableInterface_SparseHashSet<K,H,E,A>& a,
HashtableInterface_SparseHashSet<K,H,E,A>& b)
{
swap(a.ht_, b.ht_);
}
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class Value, class Key, class HashFcn, class ExtractKey,
class SetKey, class EqualKey, class Alloc>
class HashtableInterface_SparseHashtable
: public BaseHashtableInterface< sparse_hashtable<Value, Key, HashFcn,
ExtractKey, SetKey,
EqualKey, Alloc> >
{
private:
typedef sparse_hashtable<Value, Key, HashFcn, ExtractKey, SetKey,
EqualKey, Alloc> ht;
typedef BaseHashtableInterface<ht> p; // parent
public:
explicit HashtableInterface_SparseHashtable(
typename p::size_type expected_max_items = 0,
const typename p::hasher& hf = typename p::hasher(),
const typename p::key_equal& eql = typename p::key_equal(),
const typename p::allocator_type& alloc = typename p::allocator_type())
: BaseHashtableInterface<ht>(expected_max_items, hf, eql,
ExtractKey(), SetKey(), alloc) { }
template <class InputIterator>
HashtableInterface_SparseHashtable(
InputIterator f, InputIterator l,
typename p::size_type expected_max_items = 0,
const typename p::hasher& hf = typename p::hasher(),
const typename p::key_equal& eql = typename p::key_equal(),
const typename p::allocator_type& alloc = typename p::allocator_type())
: BaseHashtableInterface<ht>(expected_max_items, hf, eql,
ExtractKey(), SetKey(), alloc) {
this->insert(f, l);
}
float max_load_factor() const {
float shrink, grow;
this->ht_.get_resizing_parameters(&shrink, &grow);
return grow;
}
void max_load_factor(float new_grow) {
float shrink, grow;
this->ht_.get_resizing_parameters(&shrink, &grow);
this->ht_.set_resizing_parameters(shrink, new_grow);
}
float min_load_factor() const {
float shrink, grow;
this->ht_.get_resizing_parameters(&shrink, &grow);
return shrink;
}
void min_load_factor(float new_shrink) {
float shrink, grow;
this->ht_.get_resizing_parameters(&shrink, &grow);
this->ht_.set_resizing_parameters(new_shrink, grow);
}
template<typename AssignValue>
bool bracket_equal(const typename p::key_type&, const AssignValue&) {
return false;
}
template<typename AssignValue>
void bracket_assign(const typename p::key_type&, const AssignValue&) {
}
typename p::key_type get_key(const typename p::value_type& value) const {
return extract_key(value);
}
typename p::value_type get_data(const typename p::value_type& value) const {
return value;
}
typename p::value_type default_data() const {
return typename p::value_type();
}
bool supports_clear_no_resize() const { return false; }
bool supports_empty_key() const { return false; }
bool supports_deleted_key() const { return false; }
bool supports_brackets() const { return false; }
bool supports_readwrite() const { return true; }
bool supports_num_table_copies() const { return true; }
bool supports_serialization() const { return true; }
void set_empty_key(const typename p::key_type&) { }
void clear_empty_key() { }
typename p::key_type empty_key() const { return typename p::key_type(); }
// These tr1 names aren't defined for sparse_hashtable.
typename p::hasher hash_function() { return this->hash_funct(); }
void rehash(typename p::size_type hint) { this->resize(hint); }
// TODO(csilvers): also support/test destructive_begin()/destructive_end()?
typedef typename ht::NopointerSerializer NopointerSerializer;
protected:
template <class V2, class K2, class HF2, class EK2, class SK2, class Eq2,
class A2>
friend void swap(
HashtableInterface_SparseHashtable<V2,K2,HF2,EK2,SK2,Eq2,A2>& a,
HashtableInterface_SparseHashtable<V2,K2,HF2,EK2,SK2,Eq2,A2>& b);
typename p::key_type it_to_key(const typename p::iterator& it) const {
return extract_key(*it);
}
typename p::key_type it_to_key(const typename p::const_iterator& it) const {
return extract_key(*it);
}
typename p::key_type it_to_key(const typename p::local_iterator& it) const {
return extract_key(*it);
}
typename p::key_type it_to_key(const typename p::const_local_iterator& it)
const {
return extract_key(*it);
}
private:
ExtractKey extract_key;
};
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class V, class K, class HF, class EK, class SK, class Eq, class A>
void swap(HashtableInterface_SparseHashtable<V,K,HF,EK,SK,Eq,A>& a,
HashtableInterface_SparseHashtable<V,K,HF,EK,SK,Eq,A>& b) {
swap(a.ht_, b.ht_);
}
void EXPECT_TRUE(bool cond)
{
if (!cond)
{
::fputs("Test failed:\n", stderr);
::exit(1);
}
}
namespace spp_
{
namespace testing
{
#define EXPECT_FALSE(a) EXPECT_TRUE(!(a))
#define EXPECT_EQ(a, b) EXPECT_TRUE((a) == (b))
#define EXPECT_NE(a, b) EXPECT_TRUE((a) != (b))
#define EXPECT_LT(a, b) EXPECT_TRUE((a) < (b))
#define EXPECT_GT(a, b) EXPECT_TRUE((a) > (b))
#define EXPECT_LE(a, b) EXPECT_TRUE((a) <= (b))
#define EXPECT_GE(a, b) EXPECT_TRUE((a) >= (b))
#define EXPECT_DEATH(cmd, expected_error_string) \
try { \
cmd; \
EXPECT_FALSE("did not see expected error: " #expected_error_string); \
} catch (const std::length_error&) { \
/* Good, the cmd failed. */ \
}
#define TEST(suitename, testname) \
class TEST_##suitename##_##testname { \
public: \
TEST_##suitename##_##testname() { \
::fputs("Running " #suitename "." #testname "\n", stderr); \
Run(); \
} \
void Run(); \
}; \
static TEST_##suitename##_##testname \
test_instance_##suitename##_##testname; \
void TEST_##suitename##_##testname::Run()
template<typename C1, typename C2, typename C3>
struct TypeList3
{
typedef C1 type1;
typedef C2 type2;
typedef C3 type3;
};
// I need to list 9 types here, for code below to compile, though
// only the first 3 are ever used.
#define TYPED_TEST_CASE_3(classname, typelist) \
typedef typelist::type1 classname##_type1; \
typedef typelist::type2 classname##_type2; \
typedef typelist::type3 classname##_type3; \
SPP_ATTRIBUTE_UNUSED static const int classname##_numtypes = 3; \
typedef typelist::type1 classname##_type4; \
typedef typelist::type1 classname##_type5; \
typedef typelist::type1 classname##_type6; \
typedef typelist::type1 classname##_type7; \
typedef typelist::type1 classname##_type8; \
typedef typelist::type1 classname##_type9
template<typename C1, typename C2, typename C3, typename C4, typename C5,
typename C6, typename C7, typename C8, typename C9>
struct TypeList9
{
typedef C1 type1;
typedef C2 type2;
typedef C3 type3;
typedef C4 type4;
typedef C5 type5;
typedef C6 type6;
typedef C7 type7;
typedef C8 type8;
typedef C9 type9;
};
#define TYPED_TEST_CASE_9(classname, typelist) \
typedef typelist::type1 classname##_type1; \
typedef typelist::type2 classname##_type2; \
typedef typelist::type3 classname##_type3; \
typedef typelist::type4 classname##_type4; \
typedef typelist::type5 classname##_type5; \
typedef typelist::type6 classname##_type6; \
typedef typelist::type7 classname##_type7; \
typedef typelist::type8 classname##_type8; \
typedef typelist::type9 classname##_type9; \
static const int classname##_numtypes = 9
#define TYPED_TEST(superclass, testname) \
template<typename TypeParam> \
class TEST_onetype_##superclass##_##testname : \
public superclass<TypeParam> { \
public: \
TEST_onetype_##superclass##_##testname() { \
Run(); \
} \
private: \
void Run(); \
}; \
class TEST_typed_##superclass##_##testname { \
public: \
explicit TEST_typed_##superclass##_##testname() { \
if (superclass##_numtypes >= 1) { \
::fputs("Running " #superclass "." #testname ".1\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type1> t; \
} \
if (superclass##_numtypes >= 2) { \
::fputs("Running " #superclass "." #testname ".2\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type2> t; \
} \
if (superclass##_numtypes >= 3) { \
::fputs("Running " #superclass "." #testname ".3\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type3> t; \
} \
if (superclass##_numtypes >= 4) { \
::fputs("Running " #superclass "." #testname ".4\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type4> t; \
} \
if (superclass##_numtypes >= 5) { \
::fputs("Running " #superclass "." #testname ".5\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type5> t; \
} \
if (superclass##_numtypes >= 6) { \
::fputs("Running " #superclass "." #testname ".6\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type6> t; \
} \
if (superclass##_numtypes >= 7) { \
::fputs("Running " #superclass "." #testname ".7\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type7> t; \
} \
if (superclass##_numtypes >= 8) { \
::fputs("Running " #superclass "." #testname ".8\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type8> t; \
} \
if (superclass##_numtypes >= 9) { \
::fputs("Running " #superclass "." #testname ".9\n", stderr); \
TEST_onetype_##superclass##_##testname<superclass##_type9> t; \
} \
} \
}; \
static TEST_typed_##superclass##_##testname \
test_instance_typed_##superclass##_##testname; \
template<class TypeParam> \
void TEST_onetype_##superclass##_##testname<TypeParam>::Run()
// This is a dummy class just to make converting from internal-google
// to opensourcing easier.
class Test { };
} // namespace testing
} // namespace spp_
namespace testing = SPP_NAMESPACE::testing;
using std::cout;
using std::pair;
using std::set;
using std::string;
using std::vector;
typedef unsigned char uint8;
#ifdef _MSC_VER
// Below, we purposefully test having a very small allocator size.
// This causes some "type conversion too small" errors when using this
// allocator with sparsetable buckets. We're testing to make sure we
// handle that situation ok, so we don't need the compiler warnings.
#pragma warning(disable:4244)
#define ATTRIBUTE_UNUSED
#else
#define ATTRIBUTE_UNUSED __attribute__((unused))
#endif
namespace {
#ifndef _MSC_VER // windows defines its own version
# ifdef __MINGW32__ // mingw has trouble writing to /tmp
static string TmpFile(const char* basename) {
return string("./#") + basename;
}
# else
static string TmpFile(const char* basename) {
string kTmpdir = "/tmp";
return kTmpdir + "/" + basename;
}
# endif
#endif
// Used as a value in some of the hashtable tests. It's just some
// arbitrary user-defined type with non-trivial memory management.
// ---------------------------------------------------------------
struct ValueType
{
public:
ValueType() : s_(kDefault) { }
ValueType(const char* init_s) : s_(kDefault) { set_s(init_s); }
~ValueType() { set_s(NULL); }
ValueType(const ValueType& that) : s_(kDefault) { operator=(that); }
void operator=(const ValueType& that) { set_s(that.s_); }
bool operator==(const ValueType& that) const {
return strcmp(this->s(), that.s()) == 0;
}
void set_s(const char* new_s) {
if (s_ != kDefault)
free(const_cast<char*>(s_));
s_ = (new_s == NULL ? kDefault : reinterpret_cast<char*>(_strdup(new_s)));
}
const char* s() const { return s_; }
private:
const char* s_;
static const char* const kDefault;
};
const char* const ValueType::kDefault = "hi";
// This is used by the low-level sparse/dense_hashtable classes,
// which support the most general relationship between keys and
// values: the key is derived from the value through some arbitrary
// function. (For classes like sparse_hash_map, the 'value' is a
// key/data pair, and the function to derive the key is
// FirstElementOfPair.) KeyToValue is the inverse of this function,
// so GetKey(KeyToValue(key)) == key. To keep the tests a bit
// simpler, we've chosen to make the key and value actually be the
// same type, which is why we need only one template argument for the
// types, rather than two (one for the key and one for the value).
template<class KeyAndValueT, class KeyToValue>
struct SetKey
{
void operator()(KeyAndValueT* value, const KeyAndValueT& new_key) const
{
*value = KeyToValue()(new_key);
}
};
// A hash function that keeps track of how often it's called. We use
// a simple djb-hash so we don't depend on how STL hashes. We use
// this same method to do the key-comparison, so we can keep track
// of comparison-counts too.
struct Hasher
{
explicit Hasher(int i=0) : id_(i), num_hashes_(0), num_compares_(0) { }
int id() const { return id_; }
int num_hashes() const { return num_hashes_; }
int num_compares() const { return num_compares_; }
size_t operator()(int a) const {
num_hashes_++;
return static_cast<size_t>(a);
}
size_t operator()(const char* a) const {
num_hashes_++;
size_t hash = 0;
for (size_t i = 0; a[i]; i++ )
hash = 33 * hash + a[i];
return hash;
}
size_t operator()(const string& a) const {
num_hashes_++;
size_t hash = 0;
for (size_t i = 0; i < a.length(); i++ )
hash = 33 * hash + a[i];
return hash;
}
size_t operator()(const int* a) const {
num_hashes_++;
return static_cast<size_t>(reinterpret_cast<uintptr_t>(a));
}
bool operator()(int a, int b) const {
num_compares_++;
return a == b;
}
bool operator()(const string& a, const string& b) const {
num_compares_++;
return a == b;
}
bool operator()(const char* a, const char* b) const {
num_compares_++;
// The 'a == b' test is necessary, in case a and b are both NULL.
return (a == b || (a && b && strcmp(a, b) == 0));
}
private:
mutable int id_;
mutable int num_hashes_;
mutable int num_compares_;
};
// Allocator that allows controlling its size in various ways, to test
// allocator overflow. Because we use this allocator in a vector, we
// need to define != and swap for gcc.
// ------------------------------------------------------------------
template<typename T,
typename SizeT = size_t,
SizeT MAX_SIZE = static_cast<SizeT>(~0)>
struct Alloc
{
typedef T value_type;
typedef SizeT size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
explicit Alloc(int i=0, int* count=NULL) : id_(i), count_(count) {}
~Alloc() {}
pointer address(reference r) const { return &r; }
const_pointer address(const_reference r) const { return &r; }
pointer allocate(size_type n, const_pointer = 0) {
if (count_) ++(*count_);
return static_cast<pointer>(malloc(n * sizeof(value_type)));
}
void deallocate(pointer p, size_type) {
free(p);
}
pointer reallocate(pointer p, size_type n) {
if (count_) ++(*count_);
return static_cast<pointer>(realloc(p, n * sizeof(value_type)));
}
size_type max_size() const {
return static_cast<size_type>(MAX_SIZE);
}
void construct(pointer p, const value_type& val) {
new(p) value_type(val);
}
void destroy(pointer p) { p->~value_type(); }
bool is_custom_alloc() const { return true; }
template <class U>
Alloc(const Alloc<U, SizeT, MAX_SIZE>& that)
: id_(that.id_), count_(that.count_) {
}
template <class U>
struct rebind {
typedef Alloc<U, SizeT, MAX_SIZE> other;
};
bool operator==(const Alloc& that) const {
return this->id_ == that.id_ && this->count_ == that.count_;
}
bool operator!=(const Alloc& that) const {
return !this->operator==(that);
}
int id() const { return id_; }
// I have to make these public so the constructor used for rebinding
// can see them. Normally, I'd just make them private and say:
// template<typename U, typename U_SizeT, U_SizeT U_MAX_SIZE> friend struct Alloc;
// but MSVC 7.1 barfs on that. So public it is. But no peeking!
public:
int id_;
int* count_;
};
// Below are a few fun routines that convert a value into a key, used
// for dense_hashtable and sparse_hashtable. It's our responsibility
// to make sure, when we insert values into these objects, that the
// values match the keys we insert them under. To allow us to use
// these routines for SetKey as well, we require all these functions
// be their own inverse: f(f(x)) == x.
template<class Value>
struct Negation {
typedef Value result_type;
Value operator()(Value& v) { return -v; }
const Value operator()(const Value& v) const { return -v; }
};
struct Capital
{
typedef string result_type;
string operator()(string& s) {
return string(1, s[0] ^ 32) + s.substr(1);
}
const string operator()(const string& s) const {
return string(1, s[0] ^ 32) + s.substr(1);
}
};
struct Identity
{ // lame, I know, but an important case to test.
typedef const char* result_type;
const char* operator()(const char* s) const {
return s;
}
};
// This is just to avoid memory leaks -- it's a global pointer to
// all the memory allocated by UniqueObjectHelper. We'll use it
// to semi-test sparsetable as well. :-)
std::vector<char*> g_unique_charstar_objects(16, (char *)0);
// This is an object-generator: pass in an index, and it will return a
// unique object of type ItemType. We provide specializations for the
// types we actually support.
template <typename ItemType> ItemType UniqueObjectHelper(int index);
template<> int UniqueObjectHelper(int index)
{
return index;
}
template<> string UniqueObjectHelper(int index)
{
char buffer[64];
snprintf(buffer, sizeof(buffer), "%d", index);
return buffer;
}
template<> char* UniqueObjectHelper(int index)
{
// First grow the table if need be.
size_t table_size = g_unique_charstar_objects.size();
while (index >= static_cast<int>(table_size)) {
assert(table_size * 2 > table_size); // avoid overflow problems
table_size *= 2;
}
if (table_size > g_unique_charstar_objects.size())
g_unique_charstar_objects.resize(table_size, (char *)0);
if (!g_unique_charstar_objects[static_cast<size_t>(index)]) {
char buffer[64];
snprintf(buffer, sizeof(buffer), "%d", index);
g_unique_charstar_objects[static_cast<size_t>(index)] = _strdup(buffer);
}
return g_unique_charstar_objects[static_cast<size_t>(index)];
}
template<> const char* UniqueObjectHelper(int index) {
return UniqueObjectHelper<char*>(index);
}
template<> ValueType UniqueObjectHelper(int index) {
return ValueType(UniqueObjectHelper<string>(index).c_str());
}
template<> pair<const int, int> UniqueObjectHelper(int index) {
return pair<const int,int>(index, index + 1);
}
template<> pair<const string, string> UniqueObjectHelper(int index)
{
return pair<const string,string>(
UniqueObjectHelper<string>(index), UniqueObjectHelper<string>(index + 1));
}
template<> pair<const char* const,ValueType> UniqueObjectHelper(int index)
{
return pair<const char* const,ValueType>(
UniqueObjectHelper<char*>(index), UniqueObjectHelper<ValueType>(index+1));
}
class ValueSerializer
{
public:
bool operator()(FILE* fp, const int& value) {
return fwrite(&value, sizeof(value), 1, fp) == 1;
}
bool operator()(FILE* fp, int* value) {
return fread(value, sizeof(*value), 1, fp) == 1;
}
bool operator()(FILE* fp, const string& value) {
const size_t size = value.size();
return (*this)(fp, (int)size) && fwrite(value.c_str(), size, 1, fp) == 1;
}
bool operator()(FILE* fp, string* value) {
int size;
if (!(*this)(fp, &size)) return false;
char* buf = new char[(size_t)size];
if (fread(buf, (size_t)size, 1, fp) != 1) {
delete[] buf;
return false;
}
new (value) string(buf, (size_t)size);
delete[] buf;
return true;
}
template <typename OUTPUT>
bool operator()(OUTPUT* fp, const ValueType& v) {
return (*this)(fp, string(v.s()));
}
template <typename INPUT>
bool operator()(INPUT* fp, ValueType* v) {
string data;
if (!(*this)(fp, &data)) return false;
new(v) ValueType(data.c_str());
return true;
}
template <typename OUTPUT>
bool operator()(OUTPUT* fp, const char* const& value) {
// Just store the index.
return (*this)(fp, atoi(value));
}
template <typename INPUT>
bool operator()(INPUT* fp, const char** value) {
// Look up via index.
int index;
if (!(*this)(fp, &index)) return false;
*value = UniqueObjectHelper<char*>(index);
return true;
}
template <typename OUTPUT, typename First, typename Second>
bool operator()(OUTPUT* fp, std::pair<const First, Second>* value) {
return (*this)(fp, const_cast<First*>(&value->first))
&& (*this)(fp, &value->second);
}
template <typename INPUT, typename First, typename Second>
bool operator()(INPUT* fp, const std::pair<const First, Second>& value) {
return (*this)(fp, value.first) && (*this)(fp, value.second);
}
};
template <typename HashtableType>
class HashtableTest : public ::testing::Test
{
public:
HashtableTest() : ht_() { }
// Give syntactically-prettier access to UniqueObjectHelper.
typename HashtableType::value_type UniqueObject(int index) {
return UniqueObjectHelper<typename HashtableType::value_type>(index);
}
typename HashtableType::key_type UniqueKey(int index) {
return this->ht_.get_key(this->UniqueObject(index));
}
protected:
HashtableType ht_;
};
}
// These are used to specify the empty key and deleted key in some
// contexts. They can't be in the unnamed namespace, or static,
// because the template code requires external linkage.
extern const string kEmptyString("--empty string--");
extern const string kDeletedString("--deleted string--");
extern const int kEmptyInt = 0;
extern const int kDeletedInt = -1234676543; // an unlikely-to-pick int
extern const char* const kEmptyCharStar = "--empty char*--";
extern const char* const kDeletedCharStar = "--deleted char*--";
namespace {
#define INT_HASHTABLES \
HashtableInterface_SparseHashMap<int, int, Hasher, Hasher, \
Alloc<std::pair<const int, int> > >, \
HashtableInterface_SparseHashSet<int, Hasher, Hasher, \
Alloc<int> >, \
/* This is a table where the key associated with a value is -value */ \
HashtableInterface_SparseHashtable<int, int, Hasher, Negation<int>, \
SetKey<int, Negation<int> >, \
Hasher, Alloc<int> >
#define STRING_HASHTABLES \
HashtableInterface_SparseHashMap<string, string, Hasher, Hasher, \
Alloc<std::pair<const string, string> > >, \
HashtableInterface_SparseHashSet<string, Hasher, Hasher, \
Alloc<string> >, \
/* This is a table where the key associated with a value is Cap(value) */ \
HashtableInterface_SparseHashtable<string, string, Hasher, Capital, \
SetKey<string, Capital>, \
Hasher, Alloc<string> >
// ---------------------------------------------------------------------
// I'd like to use ValueType keys for SparseHashtable<> and
// DenseHashtable<> but I can't due to memory-management woes (nobody
// really owns the char* involved). So instead I do something simpler.
// ---------------------------------------------------------------------
#define CHARSTAR_HASHTABLES \
HashtableInterface_SparseHashMap<const char*, ValueType, \
Hasher, Hasher, Alloc<std::pair<const char* const, ValueType> > >, \
HashtableInterface_SparseHashSet<const char*, Hasher, Hasher, \
Alloc<const char*> >, \
HashtableInterface_SparseHashtable<const char*, const char*, \
Hasher, Identity, \
SetKey<const char*, Identity>, \
Hasher, Alloc<const char*> >
// ---------------------------------------------------------------------
// This is the list of types we run each test against.
// We need to define the same class 4 times due to limitations in the
// testing framework. Basically, we associate each class below with
// the set of types we want to run tests on it with.
// ---------------------------------------------------------------------
template <typename HashtableType> class HashtableIntTest
: public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableStringTest
: public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableCharStarTest
: public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableAllTest
: public HashtableTest<HashtableType> { };
typedef testing::TypeList3<INT_HASHTABLES> IntHashtables;
typedef testing::TypeList3<STRING_HASHTABLES> StringHashtables;
typedef testing::TypeList3<CHARSTAR_HASHTABLES> CharStarHashtables;
typedef testing::TypeList9<INT_HASHTABLES, STRING_HASHTABLES,
CHARSTAR_HASHTABLES> AllHashtables;
TYPED_TEST_CASE_3(HashtableIntTest, IntHashtables);
TYPED_TEST_CASE_3(HashtableStringTest, StringHashtables);
TYPED_TEST_CASE_3(HashtableCharStarTest, CharStarHashtables);
TYPED_TEST_CASE_9(HashtableAllTest, AllHashtables);
// ------------------------------------------------------------------------
// First, some testing of the underlying infrastructure.
#if 0
TEST(HashtableCommonTest, HashMunging)
{
const Hasher hasher;
// We don't munge the hash value on non-pointer template types.
{
const sparsehash_internal::sh_hashtable_settings<int, Hasher, size_t, 1>
settings(hasher, 0.0, 0.0);
const int v = 1000;
EXPECT_EQ(hasher(v), settings.hash(v));
}
{
// We do munge the hash value on pointer template types.
const sparsehash_internal::sh_hashtable_settings<int*, Hasher, size_t, 1>
settings(hasher, 0.0, 0.0);
int* v = NULL;
v += 0x10000; // get a non-trivial pointer value
EXPECT_NE(hasher(v), settings.hash(v));
}
{
const sparsehash_internal::sh_hashtable_settings<const int*, Hasher,
size_t, 1>
settings(hasher, 0.0, 0.0);
const int* v = NULL;
v += 0x10000; // get a non-trivial pointer value
EXPECT_NE(hasher(v), settings.hash(v));
}
}
#endif
// ------------------------------------------------------------------------
// If the first arg to TYPED_TEST is HashtableIntTest, it will run
// this test on all the hashtable types, with key=int and value=int.
// Likewise, HashtableStringTest will have string key/values, and
// HashtableCharStarTest will have char* keys and -- just to mix it up
// a little -- ValueType values. HashtableAllTest will run all three
// key/value types on all 6 hashtables types, for 9 test-runs total
// per test.
//
// In addition, TYPED_TEST makes available the magic keyword
// TypeParam, which is the type being used for the current test.
// This first set of tests just tests the public API, going through
// the public typedefs and methods in turn. It goes approximately
// in the definition-order in sparse_hash_map.h.
// ------------------------------------------------------------------------
TYPED_TEST(HashtableIntTest, Typedefs)
{
// Make sure all the standard STL-y typedefs are defined. The exact
// key/value types don't matter here, so we only bother testing on
// the int tables. This is just a compile-time "test"; nothing here
// can fail at runtime.
this->ht_.set_deleted_key(-2); // just so deleted_key succeeds
typename TypeParam::key_type kt;
typename TypeParam::value_type vt;
typename TypeParam::hasher h;
typename TypeParam::key_equal ke;
typename TypeParam::allocator_type at;
typename TypeParam::size_type st;
typename TypeParam::difference_type dt;
typename TypeParam::pointer p;
typename TypeParam::const_pointer cp;
// I can't declare variables of reference-type, since I have nothing
// to point them to, so I just make sure that these types exist.
ATTRIBUTE_UNUSED typedef typename TypeParam::reference r;
ATTRIBUTE_UNUSED typedef typename TypeParam::const_reference cf;
typename TypeParam::iterator i;
typename TypeParam::const_iterator ci;
typename TypeParam::local_iterator li;
typename TypeParam::const_local_iterator cli;
// Now make sure the variables are used, so the compiler doesn't
// complain. Where possible, I "use" the variable by calling the
// method that's supposed to return the unique instance of the
// relevant type (eg. get_allocator()). Otherwise, I try to call a
// different, arbitrary function that returns the type. Sometimes
// the type isn't used at all, and there's no good way to use the
// variable.
(void)vt; // value_type may not be copyable. Easiest not to try.
h = this->ht_.hash_funct();
ke = this->ht_.key_eq();
at = this->ht_.get_allocator();
st = this->ht_.size();
(void)dt;
(void)p;
(void)cp;
(void)kt;
(void)st;
i = this->ht_.begin();
ci = this->ht_.begin();
li = this->ht_.begin(0);
cli = this->ht_.begin(0);
}
TYPED_TEST(HashtableAllTest, NormalIterators)
{
EXPECT_TRUE(this->ht_.begin() == this->ht_.end());
this->ht_.insert(this->UniqueObject(1));
{
typename TypeParam::iterator it = this->ht_.begin();
EXPECT_TRUE(it != this->ht_.end());
++it;
EXPECT_TRUE(it == this->ht_.end());
}
}
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
template <class T> struct MyHash;
typedef std::pair<std::string, std::string> StringPair;
template<> struct MyHash<StringPair>
{
size_t operator()(StringPair const& p) const
{
return std::hash<string>()(p.first);
}
};
class MovableOnlyType
{
std::string _str;
std::uint64_t _int;
public:
// Make object movable and non-copyable
MovableOnlyType(MovableOnlyType &&) = default;
MovableOnlyType(const MovableOnlyType &) = delete;
MovableOnlyType& operator=(MovableOnlyType &&) = default;
MovableOnlyType& operator=(const MovableOnlyType &) = delete;
MovableOnlyType() : _str("whatever"), _int(2) {}
};
void movable_emplace_test(std::size_t iterations, int container_size)
{
for (std::size_t i=0;i<iterations;++i)
{
spp::sparse_hash_map<std::string,MovableOnlyType> m;
m.reserve(static_cast<size_t>(container_size));
char buff[20];
for (int j=0; j<container_size; ++j)
{
sprintf(buff, "%d", j);
m.emplace(buff, MovableOnlyType());
}
}
}
TEST(HashtableTest, Emplace)
{
{
sparse_hash_map<std::string, std::string> mymap;
mymap.emplace ("NCC-1701", "J.T. Kirk");
mymap.emplace ("NCC-1701-D", "J.L. Picard");
mymap.emplace ("NCC-74656", "K. Janeway");
EXPECT_TRUE(mymap["NCC-74656"] == std::string("K. Janeway"));
sparse_hash_set<StringPair, MyHash<StringPair> > myset;
myset.emplace ("NCC-1701", "J.T. Kirk");
}
movable_emplace_test(10, 50);
}
#endif
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
TEST(HashtableTest, IncompleteTypes)
{
int i;
sparse_hash_map<int *, int> ht2;
ht2[&i] = 3;
struct Bogus;
sparse_hash_map<Bogus *, int> ht3;
ht3[(Bogus *)0] = 8;
}
#endif
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
TEST(HashtableTest, ReferenceWrapper)
{
sparse_hash_map<int, std::reference_wrapper<int>> x;
int a = 5;
x.insert(std::make_pair(3, std::ref(a)));
EXPECT_EQ(x.at(3), 5);
}
#endif
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
class CNonCopyable
{
public:
CNonCopyable(CNonCopyable const &) = delete;
const CNonCopyable& operator=(CNonCopyable const &) = delete;
CNonCopyable() = default;
};
struct Probe : CNonCopyable
{
Probe() {}
Probe(Probe &&) {}
void operator=(Probe &&) {}
private:
Probe(const Probe &);
Probe& operator=(const Probe &);
};
TEST(HashtableTest, NonCopyable)
{
typedef spp::sparse_hash_map<uint64_t, Probe> THashMap;
THashMap probes;
probes.insert(THashMap::value_type(27, Probe()));
EXPECT_EQ(probes.begin()->first, 27);
}
#endif
TEST(HashtableTest, ModifyViaIterator)
{
// This only works for hash-maps, since only they have non-const values.
{
sparse_hash_map<int, int> ht;
ht[1] = 2;
sparse_hash_map<int, int>::iterator it = ht.find(1);
EXPECT_TRUE(it != ht.end());
EXPECT_EQ(1, it->first);
EXPECT_EQ(2, it->second);
it->second = 5;
it = ht.find(1);
EXPECT_TRUE(it != ht.end());
EXPECT_EQ(5, it->second);
}
}
TYPED_TEST(HashtableAllTest, ConstIterators)
{
this->ht_.insert(this->UniqueObject(1));
typename TypeParam::const_iterator it = this->ht_.begin();
EXPECT_TRUE(it != (typename TypeParam::const_iterator)this->ht_.end());
++it;
EXPECT_TRUE(it == (typename TypeParam::const_iterator)this->ht_.end());
}
TYPED_TEST(HashtableAllTest, LocalIterators)
{
// Now, tr1 begin/end (the local iterator that takes a bucket-number).
// ht::bucket() returns the bucket that this key would be inserted in.
this->ht_.insert(this->UniqueObject(1));
const typename TypeParam::size_type bucknum =
this->ht_.bucket(this->UniqueKey(1));
typename TypeParam::local_iterator b = this->ht_.begin(bucknum);
typename TypeParam::local_iterator e = this->ht_.end(bucknum);
EXPECT_TRUE(b != e);
b++;
EXPECT_TRUE(b == e);
// Check an empty bucket. We can just xor the bottom bit and be sure
// of getting a legal bucket, since #buckets is always a power of 2.
EXPECT_TRUE(this->ht_.begin(bucknum ^ 1) == this->ht_.end(bucknum ^ 1));
// Another test, this time making sure we're using the right types.
typename TypeParam::local_iterator b2 = this->ht_.begin(bucknum ^ 1);
typename TypeParam::local_iterator e2 = this->ht_.end(bucknum ^ 1);
EXPECT_TRUE(b2 == e2);
}
TYPED_TEST(HashtableAllTest, ConstLocalIterators)
{
this->ht_.insert(this->UniqueObject(1));
const typename TypeParam::size_type bucknum =
this->ht_.bucket(this->UniqueKey(1));
typename TypeParam::const_local_iterator b = this->ht_.begin(bucknum);
typename TypeParam::const_local_iterator e = this->ht_.end(bucknum);
EXPECT_TRUE(b != e);
b++;
EXPECT_TRUE(b == e);
typename TypeParam::const_local_iterator b2 = this->ht_.begin(bucknum ^ 1);
typename TypeParam::const_local_iterator e2 = this->ht_.end(bucknum ^ 1);
EXPECT_TRUE(b2 == e2);
}
TYPED_TEST(HashtableAllTest, Iterating)
{
// Test a bit more iterating than just one ++.
this->ht_.insert(this->UniqueObject(1));
this->ht_.insert(this->UniqueObject(11));
this->ht_.insert(this->UniqueObject(111));
this->ht_.insert(this->UniqueObject(1111));
this->ht_.insert(this->UniqueObject(11111));
this->ht_.insert(this->UniqueObject(111111));
this->ht_.insert(this->UniqueObject(1111111));
this->ht_.insert(this->UniqueObject(11111111));
this->ht_.insert(this->UniqueObject(111111111));
typename TypeParam::iterator it = this->ht_.begin();
for (int i = 1; i <= 9; i++) { // start at 1 so i is never 0
// && here makes it easier to tell what loop iteration the test failed on.
EXPECT_TRUE(i && (it++ != this->ht_.end()));
}
EXPECT_TRUE(it == this->ht_.end());
}
TYPED_TEST(HashtableIntTest, Constructors)
{
// The key/value types don't matter here, so I just test on one set
// of tables, the ones with int keys, which can easily handle the
// placement-news we have to do below.
Hasher hasher(1); // 1 is a unique id
int alloc_count = 0;
Alloc<typename TypeParam::value_type> alloc(2, &alloc_count);
TypeParam ht_noarg;
TypeParam ht_onearg(100);
TypeParam ht_twoarg(100, hasher);
TypeParam ht_threearg(100, hasher, hasher); // hasher serves as key_equal too
TypeParam ht_fourarg(100, hasher, hasher, alloc);
// The allocator should have been called at most once, for the last ht.
EXPECT_GE(1, alloc_count);
int old_alloc_count = alloc_count;
const typename TypeParam::value_type input[] = {
this->UniqueObject(1),
this->UniqueObject(2),
this->UniqueObject(4),
this->UniqueObject(8)
};
const int num_inputs = sizeof(input) / sizeof(input[0]);
const typename TypeParam::value_type *begin = &input[0];
const typename TypeParam::value_type *end = begin + num_inputs;
TypeParam ht_iter_noarg(begin, end);
TypeParam ht_iter_onearg(begin, end, 100);
TypeParam ht_iter_twoarg(begin, end, 100, hasher);
TypeParam ht_iter_threearg(begin, end, 100, hasher, hasher);
TypeParam ht_iter_fourarg(begin, end, 100, hasher, hasher, alloc);
// Now the allocator should have been called more.
EXPECT_GT(alloc_count, old_alloc_count);
old_alloc_count = alloc_count;
// Let's do a lot more inserting and make sure the alloc-count goes up
for (int i = 2; i < 2000; i++)
ht_fourarg.insert(this->UniqueObject(i));
EXPECT_GT(alloc_count, old_alloc_count);
EXPECT_LT(ht_noarg.bucket_count(), 100u);
EXPECT_GE(ht_onearg.bucket_count(), 100u);
EXPECT_GE(ht_twoarg.bucket_count(), 100u);
EXPECT_GE(ht_threearg.bucket_count(), 100u);
EXPECT_GE(ht_fourarg.bucket_count(), 100u);
EXPECT_GE(ht_iter_onearg.bucket_count(), 100u);
// When we pass in a hasher -- it can serve both as the hash-function
// and the key-equal function -- its id should be 1. Where we don't
// pass it in and use the default Hasher object, the id should be 0.
EXPECT_EQ(0, ht_noarg.hash_funct().id());
EXPECT_EQ(0, ht_noarg.key_eq().id());
EXPECT_EQ(0, ht_onearg.hash_funct().id());
EXPECT_EQ(0, ht_onearg.key_eq().id());
EXPECT_EQ(1, ht_twoarg.hash_funct().id());
EXPECT_EQ(0, ht_twoarg.key_eq().id());
EXPECT_EQ(1, ht_threearg.hash_funct().id());
EXPECT_EQ(1, ht_threearg.key_eq().id());
EXPECT_EQ(0, ht_iter_noarg.hash_funct().id());
EXPECT_EQ(0, ht_iter_noarg.key_eq().id());
EXPECT_EQ(0, ht_iter_onearg.hash_funct().id());
EXPECT_EQ(0, ht_iter_onearg.key_eq().id());
EXPECT_EQ(1, ht_iter_twoarg.hash_funct().id());
EXPECT_EQ(0, ht_iter_twoarg.key_eq().id());
EXPECT_EQ(1, ht_iter_threearg.hash_funct().id());
EXPECT_EQ(1, ht_iter_threearg.key_eq().id());
// Likewise for the allocator
EXPECT_EQ(0, ht_threearg.get_allocator().id());
EXPECT_EQ(0, ht_iter_threearg.get_allocator().id());
EXPECT_EQ(2, ht_fourarg.get_allocator().id());
EXPECT_EQ(2, ht_iter_fourarg.get_allocator().id());
}
TYPED_TEST(HashtableAllTest, OperatorEquals)
{
{
TypeParam ht1, ht2;
ht1.set_deleted_key(this->UniqueKey(1));
ht2.set_deleted_key(this->UniqueKey(2));
ht1.insert(this->UniqueObject(10));
ht2.insert(this->UniqueObject(20));
EXPECT_FALSE(ht1 == ht2);
ht1 = ht2;
EXPECT_TRUE(ht1 == ht2);
}
{
TypeParam ht1, ht2;
ht1.insert(this->UniqueObject(30));
ht1 = ht2;
EXPECT_EQ(0u, ht1.size());
}
{
TypeParam ht1, ht2;
ht1.set_deleted_key(this->UniqueKey(1));
ht2.insert(this->UniqueObject(1)); // has same key as ht1.delkey
ht1 = ht2; // should reset deleted-key to 'unset'
EXPECT_EQ(1u, ht1.size());
EXPECT_EQ(1u, ht1.count(this->UniqueKey(1)));
}
}
TYPED_TEST(HashtableAllTest, Clear)
{
for (int i = 1; i < 200; i++) {
this->ht_.insert(this->UniqueObject(i));
}
this->ht_.clear();
EXPECT_EQ(0u, this->ht_.size());
// TODO(csilvers): do we want to enforce that the hashtable has or
// has not shrunk? It does for dense_* but not sparse_*.
}
TYPED_TEST(HashtableAllTest, ClearNoResize)
{
if (!this->ht_.supports_clear_no_resize())
return;
typename TypeParam::size_type empty_bucket_count = this->ht_.bucket_count();
int last_element = 1;
while (this->ht_.bucket_count() == empty_bucket_count) {
this->ht_.insert(this->UniqueObject(last_element));
++last_element;
}
typename TypeParam::size_type last_bucket_count = this->ht_.bucket_count();
this->ht_.clear_no_resize();
EXPECT_EQ(last_bucket_count, this->ht_.bucket_count());
EXPECT_TRUE(this->ht_.empty());
// When inserting the same number of elements again, no resize
// should be necessary.
for (int i = 1; i < last_element; ++i) {
this->ht_.insert(this->UniqueObject(last_element + i));
EXPECT_EQ(last_bucket_count, this->ht_.bucket_count());
}
}
TYPED_TEST(HashtableAllTest, Swap)
{
// Let's make a second hashtable with its own hasher, key_equal, etc.
Hasher hasher(1); // 1 is a unique id
TypeParam other_ht(200, hasher, hasher);
this->ht_.set_deleted_key(this->UniqueKey(1));
other_ht.set_deleted_key(this->UniqueKey(2));
for (int i = 3; i < 2000; i++) {
this->ht_.insert(this->UniqueObject(i));
}
this->ht_.erase(this->UniqueKey(1000));
other_ht.insert(this->UniqueObject(2001));
typename TypeParam::size_type expected_buckets = other_ht.bucket_count();
this->ht_.swap(other_ht);
EXPECT_EQ(1, this->ht_.hash_funct().id());
EXPECT_EQ(0, other_ht.hash_funct().id());
EXPECT_EQ(1, this->ht_.key_eq().id());
EXPECT_EQ(0, other_ht.key_eq().id());
EXPECT_EQ(expected_buckets, this->ht_.bucket_count());
EXPECT_GT(other_ht.bucket_count(), 200u);
EXPECT_EQ(1u, this->ht_.size());
EXPECT_EQ(1996u, other_ht.size()); // because we erased 1000
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(111)));
EXPECT_EQ(1u, other_ht.count(this->UniqueKey(111)));
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(2001)));
EXPECT_EQ(0u, other_ht.count(this->UniqueKey(2001)));
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(1000)));
EXPECT_EQ(0u, other_ht.count(this->UniqueKey(1000)));
// We purposefully don't swap allocs -- they're not necessarily swappable.
// Now swap back, using the free-function swap
// NOTE: MSVC seems to have trouble with this free swap, not quite
// sure why. I've given up trying to fix it though.
#ifdef _MSC_VER
other_ht.swap(this->ht_);
#else
std::swap(this->ht_, other_ht);
#endif
EXPECT_EQ(0, this->ht_.hash_funct().id());
EXPECT_EQ(1, other_ht.hash_funct().id());
EXPECT_EQ(1996u, this->ht_.size());
EXPECT_EQ(1u, other_ht.size());
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(111)));
EXPECT_EQ(0u, other_ht.count(this->UniqueKey(111)));
// A user reported a crash with this code using swap to clear.
// We've since fixed the bug; this prevents a regression.
TypeParam swap_to_clear_ht;
swap_to_clear_ht.set_deleted_key(this->UniqueKey(1));
for (int i = 2; i < 10000; ++i) {
swap_to_clear_ht.insert(this->UniqueObject(i));
}
TypeParam empty_ht;
empty_ht.swap(swap_to_clear_ht);
swap_to_clear_ht.set_deleted_key(this->UniqueKey(1));
for (int i = 2; i < 10000; ++i) {
swap_to_clear_ht.insert(this->UniqueObject(i));
}
}
TYPED_TEST(HashtableAllTest, Size)
{
EXPECT_EQ(0u, this->ht_.size());
for (int i = 1; i < 1000; i++) { // go through some resizes
this->ht_.insert(this->UniqueObject(i));
EXPECT_EQ(static_cast<typename TypeParam::size_type>(i), this->ht_.size());
}
this->ht_.clear();
EXPECT_EQ(0u, this->ht_.size());
this->ht_.set_deleted_key(this->UniqueKey(1));
EXPECT_EQ(0u, this->ht_.size()); // deleted key doesn't count
for (int i = 2; i < 1000; i++) { // go through some resizes
this->ht_.insert(this->UniqueObject(i));
this->ht_.erase(this->UniqueKey(i));
EXPECT_EQ(0u, this->ht_.size());
}
}
TEST(HashtableTest, MaxSizeAndMaxBucketCount)
{
// The max size depends on the allocator. So we can't use the
// built-in allocator type; instead, we make our own types.
sparse_hash_set<int, Hasher, Hasher, Alloc<int> > ht_default;
sparse_hash_set<int, Hasher, Hasher, Alloc<int, unsigned char> > ht_char;
sparse_hash_set<int, Hasher, Hasher, Alloc<int, unsigned char, 104> > ht_104;
EXPECT_GE(ht_default.max_size(), 256u);
EXPECT_EQ(255u, ht_char.max_size());
EXPECT_EQ(104u, ht_104.max_size());
// In our implementations, MaxBucketCount == MaxSize.
EXPECT_EQ(ht_default.max_size(), ht_default.max_bucket_count());
EXPECT_EQ(ht_char.max_size(), ht_char.max_bucket_count());
EXPECT_EQ(ht_104.max_size(), ht_104.max_bucket_count());
}
TYPED_TEST(HashtableAllTest, Empty)
{
EXPECT_TRUE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(1));
EXPECT_FALSE(this->ht_.empty());
this->ht_.clear();
EXPECT_TRUE(this->ht_.empty());
TypeParam empty_ht;
this->ht_.insert(this->UniqueObject(1));
this->ht_.swap(empty_ht);
EXPECT_TRUE(this->ht_.empty());
}
TYPED_TEST(HashtableAllTest, BucketCount)
{
TypeParam ht(100);
// constructor arg is number of *items* to be inserted, not the
// number of buckets, so we expect more buckets.
EXPECT_GT(ht.bucket_count(), 100u);
for (int i = 1; i < 200; i++) {
ht.insert(this->UniqueObject(i));
}
EXPECT_GT(ht.bucket_count(), 200u);
}
TYPED_TEST(HashtableAllTest, BucketAndBucketSize)
{
const typename TypeParam::size_type expected_bucknum = this->ht_.bucket(
this->UniqueKey(1));
EXPECT_EQ(0u, this->ht_.bucket_size(expected_bucknum));
this->ht_.insert(this->UniqueObject(1));
EXPECT_EQ(expected_bucknum, this->ht_.bucket(this->UniqueKey(1)));
EXPECT_EQ(1u, this->ht_.bucket_size(expected_bucknum));
// Check that a bucket we didn't insert into, has a 0 size. Since
// we have an even number of buckets, bucknum^1 is guaranteed in range.
EXPECT_EQ(0u, this->ht_.bucket_size(expected_bucknum ^ 1));
}
TYPED_TEST(HashtableAllTest, LoadFactor)
{
const typename TypeParam::size_type kSize = 16536;
// Check growing past various thresholds and then shrinking below
// them.
for (float grow_threshold = 0.2f;
grow_threshold <= 0.8f;
grow_threshold += 0.2f)
{
TypeParam ht;
ht.set_deleted_key(this->UniqueKey(1));
ht.max_load_factor(grow_threshold);
ht.min_load_factor(0.0);
EXPECT_EQ(grow_threshold, ht.max_load_factor());
EXPECT_EQ(0.0, ht.min_load_factor());
ht.resize(kSize);
size_t bucket_count = ht.bucket_count();
// Erase and insert an element to set consider_shrink = true,
// which should not cause a shrink because the threshold is 0.0.
ht.insert(this->UniqueObject(2));
ht.erase(this->UniqueKey(2));
for (int i = 2;; ++i)
{
ht.insert(this->UniqueObject(i));
if (static_cast<float>(ht.size())/bucket_count < grow_threshold) {
EXPECT_EQ(bucket_count, ht.bucket_count());
} else {
EXPECT_GT(ht.bucket_count(), bucket_count);
break;
}
}
// Now set a shrink threshold 1% below the current size and remove
// items until the size falls below that.
const float shrink_threshold = static_cast<float>(ht.size()) /
ht.bucket_count() - 0.01f;
// This time around, check the old set_resizing_parameters interface.
ht.set_resizing_parameters(shrink_threshold, 1.0);
EXPECT_EQ(1.0, ht.max_load_factor());
EXPECT_EQ(shrink_threshold, ht.min_load_factor());
bucket_count = ht.bucket_count();
for (int i = 2;; ++i)
{
ht.erase(this->UniqueKey(i));
// A resize is only triggered by an insert, so add and remove a
// value every iteration to trigger the shrink as soon as the
// threshold is passed.
ht.erase(this->UniqueKey(i+1));
ht.insert(this->UniqueObject(i+1));
if (static_cast<float>(ht.size())/bucket_count > shrink_threshold) {
EXPECT_EQ(bucket_count, ht.bucket_count());
} else {
EXPECT_LT(ht.bucket_count(), bucket_count);
break;
}
}
}
}
TYPED_TEST(HashtableAllTest, ResizeAndRehash)
{
// resize() and rehash() are synonyms. rehash() is the tr1 name.
TypeParam ht(10000);
ht.max_load_factor(0.8f); // for consistency's sake
for (int i = 1; i < 100; ++i)
ht.insert(this->UniqueObject(i));
ht.resize(0);
// Now ht should be as small as possible.
EXPECT_LT(ht.bucket_count(), 300u);
ht.rehash(9000); // use the 'rehash' version of the name.
// Bucket count should be next power of 2, after considering max_load_factor.
EXPECT_EQ(16384u, ht.bucket_count());
for (int i = 101; i < 200; ++i)
ht.insert(this->UniqueObject(i));
// Adding a few hundred buckets shouldn't have caused a resize yet.
EXPECT_EQ(ht.bucket_count(), 16384u);
}
TYPED_TEST(HashtableAllTest, FindAndCountAndEqualRange)
{
pair<typename TypeParam::iterator, typename TypeParam::iterator> eq_pair;
pair<typename TypeParam::const_iterator,
typename TypeParam::const_iterator> const_eq_pair;
EXPECT_TRUE(this->ht_.empty());
EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) == this->ht_.end());
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(1)));
eq_pair = this->ht_.equal_range(this->UniqueKey(1));
EXPECT_TRUE(eq_pair.first == eq_pair.second);
this->ht_.insert(this->UniqueObject(1));
EXPECT_FALSE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(11));
this->ht_.insert(this->UniqueObject(111));
this->ht_.insert(this->UniqueObject(1111));
this->ht_.insert(this->UniqueObject(11111));
this->ht_.insert(this->UniqueObject(111111));
this->ht_.insert(this->UniqueObject(1111111));
this->ht_.insert(this->UniqueObject(11111111));
this->ht_.insert(this->UniqueObject(111111111));
EXPECT_EQ(9u, this->ht_.size());
typename TypeParam::const_iterator it = this->ht_.find(this->UniqueKey(1));
EXPECT_EQ(it.key(), this->UniqueKey(1));
// Allow testing the const version of the methods as well.
const TypeParam ht = this->ht_;
// Some successful lookups (via find, count, and equal_range).
EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) != this->ht_.end());
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1)));
eq_pair = this->ht_.equal_range(this->UniqueKey(1));
EXPECT_TRUE(eq_pair.first != eq_pair.second);
EXPECT_EQ(eq_pair.first.key(), this->UniqueKey(1));
++eq_pair.first;
EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(1)) != ht.end());
EXPECT_EQ(1u, ht.count(this->UniqueKey(1)));
const_eq_pair = ht.equal_range(this->UniqueKey(1));
EXPECT_TRUE(const_eq_pair.first != const_eq_pair.second);
EXPECT_EQ(const_eq_pair.first.key(), this->UniqueKey(1));
++const_eq_pair.first;
EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11111)) != this->ht_.end());
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(11111)));
eq_pair = this->ht_.equal_range(this->UniqueKey(11111));
EXPECT_TRUE(eq_pair.first != eq_pair.second);
EXPECT_EQ(eq_pair.first.key(), this->UniqueKey(11111));
++eq_pair.first;
EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11111)) != ht.end());
EXPECT_EQ(1u, ht.count(this->UniqueKey(11111)));
const_eq_pair = ht.equal_range(this->UniqueKey(11111));
EXPECT_TRUE(const_eq_pair.first != const_eq_pair.second);
EXPECT_EQ(const_eq_pair.first.key(), this->UniqueKey(11111));
++const_eq_pair.first;
EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
// Some unsuccessful lookups (via find, count, and equal_range).
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11112)) == this->ht_.end());
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(11112)));
eq_pair = this->ht_.equal_range(this->UniqueKey(11112));
EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11112)) == ht.end());
EXPECT_EQ(0u, ht.count(this->UniqueKey(11112)));
const_eq_pair = ht.equal_range(this->UniqueKey(11112));
EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11110)) == this->ht_.end());
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(11110)));
eq_pair = this->ht_.equal_range(this->UniqueKey(11110));
EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11110)) == ht.end());
EXPECT_EQ(0u, ht.count(this->UniqueKey(11110)));
const_eq_pair = ht.equal_range(this->UniqueKey(11110));
EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
}
TYPED_TEST(HashtableAllTest, BracketInsert)
{
// tests operator[], for those types that support it.
if (!this->ht_.supports_brackets())
return;
// bracket_equal is equivalent to ht_[a] == b. It should insert a if
// it doesn't already exist.
EXPECT_TRUE(this->ht_.bracket_equal(this->UniqueKey(1),
this->ht_.default_data()));
EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) != this->ht_.end());
// bracket_assign is equivalent to ht_[a] = b.
this->ht_.bracket_assign(this->UniqueKey(2),
this->ht_.get_data(this->UniqueObject(4)));
EXPECT_TRUE(this->ht_.find(this->UniqueKey(2)) != this->ht_.end());
EXPECT_TRUE(this->ht_.bracket_equal(
this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(4))));
this->ht_.bracket_assign(
this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6)));
EXPECT_TRUE(this->ht_.bracket_equal(
this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6))));
// bracket_equal shouldn't have modified the value.
EXPECT_TRUE(this->ht_.bracket_equal(
this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6))));
// Verify that an operator[] that doesn't cause a resize, also
// doesn't require an extra rehash.
TypeParam ht(100);
EXPECT_EQ(0, ht.hash_funct().num_hashes());
ht.bracket_assign(this->UniqueKey(2), ht.get_data(this->UniqueObject(2)));
EXPECT_EQ(1, ht.hash_funct().num_hashes());
// And overwriting, likewise, should only cause one extra hash.
ht.bracket_assign(this->UniqueKey(2), ht.get_data(this->UniqueObject(2)));
EXPECT_EQ(2, ht.hash_funct().num_hashes());
}
TYPED_TEST(HashtableAllTest, InsertValue)
{
// First, try some straightforward insertions.
EXPECT_TRUE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(1));
EXPECT_FALSE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(11));
this->ht_.insert(this->UniqueObject(111));
this->ht_.insert(this->UniqueObject(1111));
this->ht_.insert(this->UniqueObject(11111));
this->ht_.insert(this->UniqueObject(111111));
this->ht_.insert(this->UniqueObject(1111111));
this->ht_.insert(this->UniqueObject(11111111));
this->ht_.insert(this->UniqueObject(111111111));
EXPECT_EQ(9u, this->ht_.size());
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1)));
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1111)));
// Check the return type.
pair<typename TypeParam::iterator, bool> insert_it;
insert_it = this->ht_.insert(this->UniqueObject(1));
EXPECT_EQ(false, insert_it.second); // false: already present
EXPECT_TRUE(*insert_it.first == this->UniqueObject(1));
insert_it = this->ht_.insert(this->UniqueObject(2));
EXPECT_EQ(true, insert_it.second); // true: not already present
EXPECT_TRUE(*insert_it.first == this->UniqueObject(2));
}
TYPED_TEST(HashtableIntTest, InsertRange)
{
// We just test the ints here, to make the placement-new easier.
TypeParam ht_source;
ht_source.insert(this->UniqueObject(10));
ht_source.insert(this->UniqueObject(100));
ht_source.insert(this->UniqueObject(1000));
ht_source.insert(this->UniqueObject(10000));
ht_source.insert(this->UniqueObject(100000));
ht_source.insert(this->UniqueObject(1000000));
const typename TypeParam::value_type input[] = {
// This is a copy of the first element in ht_source.
*ht_source.begin(),
this->UniqueObject(2),
this->UniqueObject(4),
this->UniqueObject(8)
};
set<typename TypeParam::value_type> set_input;
set_input.insert(this->UniqueObject(1111111));
set_input.insert(this->UniqueObject(111111));
set_input.insert(this->UniqueObject(11111));
set_input.insert(this->UniqueObject(1111));
set_input.insert(this->UniqueObject(111));
set_input.insert(this->UniqueObject(11));
// Insert from ht_source, an iterator of the same type as us.
typename TypeParam::const_iterator begin = ht_source.begin();
typename TypeParam::const_iterator end = begin;
std::advance(end, 3);
this->ht_.insert(begin, end); // insert 3 elements from ht_source
EXPECT_EQ(3u, this->ht_.size());
EXPECT_TRUE(*this->ht_.begin() == this->UniqueObject(10) ||
*this->ht_.begin() == this->UniqueObject(100) ||
*this->ht_.begin() == this->UniqueObject(1000) ||
*this->ht_.begin() == this->UniqueObject(10000) ||
*this->ht_.begin() == this->UniqueObject(100000) ||
*this->ht_.begin() == this->UniqueObject(1000000));
// And insert from set_input, a separate, non-random-access iterator.
typename set<typename TypeParam::value_type>::const_iterator set_begin;
typename set<typename TypeParam::value_type>::const_iterator set_end;
set_begin = set_input.begin();
set_end = set_begin;
std::advance(set_end, 3);
this->ht_.insert(set_begin, set_end);
EXPECT_EQ(6u, this->ht_.size());
// Insert from input as well, a separate, random-access iterator.
// The first element of input overlaps with an existing element
// of ht_, so this should only up the size by 2.
this->ht_.insert(&input[0], &input[3]);
EXPECT_EQ(8u, this->ht_.size());
}
TEST(HashtableTest, InsertValueToMap)
{
// For the maps in particular, ensure that inserting doesn't change
// the value.
sparse_hash_map<int, int> shm;
pair<sparse_hash_map<int,int>::iterator, bool> shm_it;
shm[1] = 2; // test a different method of inserting
shm_it = shm.insert(pair<int, int>(1, 3));
EXPECT_EQ(false, shm_it.second);
EXPECT_EQ(1, shm_it.first->first);
EXPECT_EQ(2, shm_it.first->second);
shm_it.first->second = 20;
EXPECT_EQ(20, shm[1]);
shm_it = shm.insert(pair<int, int>(2, 4));
EXPECT_EQ(true, shm_it.second);
EXPECT_EQ(2, shm_it.first->first);
EXPECT_EQ(4, shm_it.first->second);
EXPECT_EQ(4, shm[2]);
}
TYPED_TEST(HashtableStringTest, EmptyKey)
{
// Only run the string tests, to make it easier to know what the
// empty key should be.
if (!this->ht_.supports_empty_key())
return;
EXPECT_EQ(kEmptyString, this->ht_.empty_key());
}
TYPED_TEST(HashtableAllTest, Erase)
{
this->ht_.set_deleted_key(this->UniqueKey(1));
EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(20)));
this->ht_.insert(this->UniqueObject(10));
this->ht_.insert(this->UniqueObject(20));
EXPECT_EQ(1u, this->ht_.erase(this->UniqueKey(20)));
EXPECT_EQ(1u, this->ht_.size());
EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(20)));
EXPECT_EQ(1u, this->ht_.size());
EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(19)));
EXPECT_EQ(1u, this->ht_.size());
typename TypeParam::iterator it = this->ht_.find(this->UniqueKey(10));
EXPECT_TRUE(it != this->ht_.end());
this->ht_.erase(it);
EXPECT_EQ(0u, this->ht_.size());
for (int i = 10; i < 100; i++)
this->ht_.insert(this->UniqueObject(i));
EXPECT_EQ(90u, this->ht_.size());
this->ht_.erase(this->ht_.begin(), this->ht_.end());
EXPECT_EQ(0u, this->ht_.size());
}
TYPED_TEST(HashtableAllTest, EraseDoesNotResize)
{
this->ht_.set_deleted_key(this->UniqueKey(1));
for (int i = 10; i < 2000; i++) {
this->ht_.insert(this->UniqueObject(i));
}
const typename TypeParam::size_type old_count = this->ht_.bucket_count();
for (int i = 10; i < 1000; i++) { // erase half one at a time
EXPECT_EQ(1u, this->ht_.erase(this->UniqueKey(i)));
}
this->ht_.erase(this->ht_.begin(), this->ht_.end()); // and the rest at once
EXPECT_EQ(0u, this->ht_.size());
EXPECT_EQ(old_count, this->ht_.bucket_count());
}
TYPED_TEST(HashtableAllTest, Equals)
{
// The real test here is whether two hashtables are equal if they
// have the same items but in a different order.
TypeParam ht1;
TypeParam ht2;
EXPECT_TRUE(ht1 == ht1);
EXPECT_FALSE(ht1 != ht1);
EXPECT_TRUE(ht1 == ht2);
EXPECT_FALSE(ht1 != ht2);
ht1.set_deleted_key(this->UniqueKey(1));
// Only the contents affect equality, not things like deleted-key.
EXPECT_TRUE(ht1 == ht2);
EXPECT_FALSE(ht1 != ht2);
ht1.resize(2000);
EXPECT_TRUE(ht1 == ht2);
// The choice of allocator/etc doesn't matter either.
Hasher hasher(1);
Alloc<typename TypeParam::value_type> alloc(2, NULL);
TypeParam ht3(5, hasher, hasher, alloc);
EXPECT_TRUE(ht1 == ht3);
EXPECT_FALSE(ht1 != ht3);
ht1.insert(this->UniqueObject(2));
EXPECT_TRUE(ht1 != ht2);
EXPECT_FALSE(ht1 == ht2); // this should hold as well!
ht2.insert(this->UniqueObject(2));
EXPECT_TRUE(ht1 == ht2);
for (int i = 3; i <= 2000; i++) {
ht1.insert(this->UniqueObject(i));
}
for (int i = 2000; i >= 3; i--) {
ht2.insert(this->UniqueObject(i));
}
EXPECT_TRUE(ht1 == ht2);
}
TEST(HashtableTest, IntIO)
{
// Since the set case is just a special (easier) case than the map case, I
// just test on sparse_hash_map. This handles the easy case where we can
// use the standard reader and writer.
sparse_hash_map<int, int> ht_out;
ht_out.set_deleted_key(0);
for (int i = 1; i < 1000; i++) {
ht_out[i] = i * i;
}
ht_out.erase(563); // just to test having some erased keys when we write.
ht_out.erase(22);
string file(TmpFile("intio"));
FILE* fp = fopen(file.c_str(), "wb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.write_metadata(fp));
EXPECT_TRUE(ht_out.write_nopointer_data(fp));
fclose(fp);
}
sparse_hash_map<int, int> ht_in;
fp = fopen(file.c_str(), "rb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_in.read_metadata(fp));
EXPECT_TRUE(ht_in.read_nopointer_data(fp));
fclose(fp);
}
EXPECT_EQ(1, ht_in[1]);
EXPECT_EQ(998001, ht_in[999]);
EXPECT_EQ(100, ht_in[10]);
EXPECT_EQ(441, ht_in[21]);
EXPECT_EQ(0, ht_in[22]); // should not have been saved
EXPECT_EQ(0, ht_in[563]);
}
TEST(HashtableTest, StringIO)
{
// Since the set case is just a special (easier) case than the map case,
// I just test on sparse_hash_map. This handles the difficult case where
// we have to write our own custom reader/writer for the data.
typedef sparse_hash_map<string, string, Hasher, Hasher> SP;
SP ht_out;
ht_out.set_deleted_key(string(""));
for (int i = 32; i < 128; i++) {
// This maps 'a' to 32 a's, 'b' to 33 b's, etc.
ht_out[string(1, (char)i)] = string((size_t)i, (char)i);
}
ht_out.erase("c"); // just to test having some erased keys when we write.
ht_out.erase("y");
string file(TmpFile("stringio"));
FILE* fp = fopen(file.c_str(), "wb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.write_metadata(fp));
for (SP::const_iterator it = ht_out.cbegin(); it != ht_out.cend(); ++it)
{
const string::size_type first_size = it->first.length();
fwrite(&first_size, sizeof(first_size), 1, fp); // ignore endianness issues
fwrite(it->first.c_str(), first_size, 1, fp);
const string::size_type second_size = it->second.length();
fwrite(&second_size, sizeof(second_size), 1, fp);
fwrite(it->second.c_str(), second_size, 1, fp);
}
fclose(fp);
}
sparse_hash_map<string, string, Hasher, Hasher> ht_in;
fp = fopen(file.c_str(), "rb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_in.read_metadata(fp));
for (sparse_hash_map<string, string, Hasher, Hasher>::iterator
it = ht_in.begin(); it != ht_in.end(); ++it) {
string::size_type first_size;
EXPECT_EQ(1u, fread(&first_size, sizeof(first_size), 1, fp));
char* first = new char[first_size];
EXPECT_EQ(1u, fread(first, first_size, 1, fp));
string::size_type second_size;
EXPECT_EQ(1u, fread(&second_size, sizeof(second_size), 1, fp));
char* second = new char[second_size];
EXPECT_EQ(1u, fread(second, second_size, 1, fp));
// it points to garbage, so we have to use placement-new to initialize.
// We also have to use const-cast since it->first is const.
new(const_cast<string*>(&it->first)) string(first, first_size);
new(&it->second) string(second, second_size);
delete[] first;
delete[] second;
}
fclose(fp);
}
EXPECT_EQ(string(" "), ht_in[" "]);
EXPECT_EQ(string("+++++++++++++++++++++++++++++++++++++++++++"), ht_in["+"]);
EXPECT_EQ(string(""), ht_in["c"]); // should not have been saved
EXPECT_EQ(string(""), ht_in["y"]);
}
TYPED_TEST(HashtableAllTest, Serialization)
{
if (!this->ht_.supports_serialization()) return;
TypeParam ht_out;
ht_out.set_deleted_key(this->UniqueKey(2000));
for (int i = 1; i < 100; i++) {
ht_out.insert(this->UniqueObject(i));
}
// just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56));
ht_out.erase(this->UniqueKey(22));
string file(TmpFile("serialization"));
FILE* fp = fopen(file.c_str(), "wb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.serialize(ValueSerializer(), fp));
fclose(fp);
}
TypeParam ht_in;
fp = fopen(file.c_str(), "rb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_in.unserialize(ValueSerializer(), fp));
fclose(fp);
}
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
// should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
}
TYPED_TEST(HashtableIntTest, NopointerSerialization)
{
if (!this->ht_.supports_serialization()) return;
TypeParam ht_out;
ht_out.set_deleted_key(this->UniqueKey(2000));
for (int i = 1; i < 100; i++) {
ht_out.insert(this->UniqueObject(i));
}
// just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56));
ht_out.erase(this->UniqueKey(22));
string file(TmpFile("nopointer_serialization"));
FILE* fp = fopen(file.c_str(), "wb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(), fp));
fclose(fp);
}
TypeParam ht_in;
fp = fopen(file.c_str(), "rb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(), fp));
fclose(fp);
}
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
// should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
}
// We don't support serializing to a string by default, but you can do
// it by writing your own custom input/output class.
class StringIO {
public:
explicit StringIO(string* s) : s_(s) {}
size_t Write(const void* buf, size_t len) {
s_->append(reinterpret_cast<const char*>(buf), len);
return len;
}
size_t Read(void* buf, size_t len) {
if (s_->length() < len)
len = s_->length();
memcpy(reinterpret_cast<char*>(buf), s_->data(), len);
s_->erase(0, len);
return len;
}
private:
StringIO& operator=(const StringIO&);
string* const s_;
};
TYPED_TEST(HashtableIntTest, SerializingToString)
{
if (!this->ht_.supports_serialization()) return;
TypeParam ht_out;
ht_out.set_deleted_key(this->UniqueKey(2000));
for (int i = 1; i < 100; i++) {
ht_out.insert(this->UniqueObject(i));
}
// just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56));
ht_out.erase(this->UniqueKey(22));
string stringbuf;
StringIO stringio(&stringbuf);
EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
&stringio));
TypeParam ht_in;
EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(),
&stringio));
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
// should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
}
// An easier way to do the above would be to use the existing stream methods.
TYPED_TEST(HashtableIntTest, SerializingToStringStream)
{
if (!this->ht_.supports_serialization()) return;
TypeParam ht_out;
ht_out.set_deleted_key(this->UniqueKey(2000));
for (int i = 1; i < 100; i++) {
ht_out.insert(this->UniqueObject(i));
}
// just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56));
ht_out.erase(this->UniqueKey(22));
std::stringstream string_buffer;
EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
&string_buffer));
TypeParam ht_in;
EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(),
&string_buffer));
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
// should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
}
// Verify that the metadata serialization is endianness and word size
// agnostic.
TYPED_TEST(HashtableAllTest, MetadataSerializationAndEndianness)
{
TypeParam ht_out;
string kExpectedDense("\x13W\x86""B\0\0\0\0\0\0\0 \0\0\0\0\0\0\0\0\0\0\0\0",
24);
// GP change - switched size from 20 to formula, because the sparsegroup bitmap is 4 or 8 bytes and not 6
string kExpectedSparse("$hu1\0\0\0 \0\0\0\0\0\0\0\0\0\0\0", 12 + sizeof(group_bm_type));
if (ht_out.supports_readwrite()) {
size_t num_bytes = 0;
string file(TmpFile("metadata_serialization"));
FILE* fp = fopen(file.c_str(), "wb");
if (fp)
{
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.write_metadata(fp));
EXPECT_TRUE(ht_out.write_nopointer_data(fp));
num_bytes = (const size_t)ftell(fp);
fclose(fp);
}
char contents[24] = {0};
fp = fopen(file.c_str(), "rb");
if (fp)
{
EXPECT_LE(num_bytes, static_cast<size_t>(24));
EXPECT_EQ(num_bytes, fread(contents, 1, num_bytes <= 24 ? num_bytes : 24, fp));
EXPECT_EQ(EOF, fgetc(fp)); // check we're *exactly* the right size
fclose(fp);
}
// TODO(csilvers): check type of ht_out instead of looking at the 1st byte.
if (contents[0] == kExpectedDense[0]) {
EXPECT_EQ(kExpectedDense, string(contents, num_bytes));
} else {
EXPECT_EQ(kExpectedSparse, string(contents, num_bytes));
}
}
// Do it again with new-style serialization. Here we can use StringIO.
if (ht_out.supports_serialization()) {
string stringbuf;
StringIO stringio(&stringbuf);
EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
&stringio));
if (stringbuf[0] == kExpectedDense[0]) {
EXPECT_EQ(kExpectedDense, stringbuf);
} else {
EXPECT_EQ(kExpectedSparse, stringbuf);
}
}
}
// ------------------------------------------------------------------------
// The above tests test the general API for correctness. These tests
// test a few corner cases that have tripped us up in the past, and
// more general, cross-API issues like memory management.
TYPED_TEST(HashtableAllTest, BracketOperatorCrashing)
{
this->ht_.set_deleted_key(this->UniqueKey(1));
for (int iters = 0; iters < 10; iters++) {
// We start at 33 because after shrinking, we'll be at 32 buckets.
for (int i = 33; i < 133; i++) {
this->ht_.bracket_assign(this->UniqueKey(i),
this->ht_.get_data(this->UniqueObject(i)));
}
this->ht_.clear_no_resize();
// This will force a shrink on the next insert, which we want to test.
this->ht_.bracket_assign(this->UniqueKey(2),
this->ht_.get_data(this->UniqueObject(2)));
this->ht_.erase(this->UniqueKey(2));
}
}
// For data types with trivial copy-constructors and destructors, we
// should use an optimized routine for data-copying, that involves
// memmove. We test this by keeping count of how many times the
// copy-constructor is called; it should be much less with the
// optimized code.
struct Memmove
{
public:
Memmove(): i(0) {}
explicit Memmove(int ival): i(ival) {}
Memmove(const Memmove& that) { this->i = that.i; num_copies++; }
int i;
static int num_copies;
};
int Memmove::num_copies = 0;
struct NoMemmove
{
public:
NoMemmove(): i(0) {}
explicit NoMemmove(int ival): i(ival) {}
NoMemmove(const NoMemmove& that) { this->i = that.i; num_copies++; }
int i;
static int num_copies;
};
int NoMemmove::num_copies = 0;
} // unnamed namespace
#if 0
// This is what tells the hashtable code it can use memmove for this class:
namespace google {
template<> struct has_trivial_copy<Memmove> : true_type { };
template<> struct has_trivial_destructor<Memmove> : true_type { };
};
#endif
namespace
{
TEST(HashtableTest, SimpleDataTypeOptimizations)
{
// Only sparsehashtable optimizes moves in this way.
sparse_hash_map<int, Memmove, Hasher, Hasher> memmove;
sparse_hash_map<int, NoMemmove, Hasher, Hasher> nomemmove;
sparse_hash_map<int, Memmove, Hasher, Hasher, Alloc<std::pair<const int, Memmove> > >
memmove_nonstandard_alloc;
Memmove::num_copies = 0;
for (int i = 10000; i > 0; i--) {
memmove[i] = Memmove(i);
}
// GP change - const int memmove_copies = Memmove::num_copies;
NoMemmove::num_copies = 0;
for (int i = 10000; i > 0; i--) {
nomemmove[i] = NoMemmove(i);
}
// GP change - const int nomemmove_copies = NoMemmove::num_copies;
Memmove::num_copies = 0;
for (int i = 10000; i > 0; i--) {
memmove_nonstandard_alloc[i] = Memmove(i);
}
// GP change - const int memmove_nonstandard_alloc_copies = Memmove::num_copies;
// GP change - commented out following two lines
//EXPECT_GT(nomemmove_copies, memmove_copies);
//EXPECT_EQ(nomemmove_copies, memmove_nonstandard_alloc_copies);
}
TYPED_TEST(HashtableAllTest, ResizeHysteresis)
{
// We want to make sure that when we create a hashtable, and then
// add and delete one element, the size of the hashtable doesn't
// change.
this->ht_.set_deleted_key(this->UniqueKey(1));
typename TypeParam::size_type old_bucket_count = this->ht_.bucket_count();
this->ht_.insert(this->UniqueObject(4));
this->ht_.erase(this->UniqueKey(4));
this->ht_.insert(this->UniqueObject(4));
this->ht_.erase(this->UniqueKey(4));
EXPECT_EQ(old_bucket_count, this->ht_.bucket_count());
// Try it again, but with a hashtable that starts very small
TypeParam ht(2);
EXPECT_LT(ht.bucket_count(), 32u); // verify we really do start small
ht.set_deleted_key(this->UniqueKey(1));
old_bucket_count = ht.bucket_count();
ht.insert(this->UniqueObject(4));
ht.erase(this->UniqueKey(4));
ht.insert(this->UniqueObject(4));
ht.erase(this->UniqueKey(4));
EXPECT_EQ(old_bucket_count, ht.bucket_count());
}
TEST(HashtableTest, ConstKey)
{
// Sometimes people write hash_map<const int, int>, even though the
// const isn't necessary. Make sure we handle this cleanly.
sparse_hash_map<const int, int, Hasher, Hasher> shm;
shm.set_deleted_key(1);
shm[10] = 20;
}
TYPED_TEST(HashtableAllTest, ResizeActuallyResizes)
{
// This tests for a problem we had where we could repeatedly "resize"
// a hashtable to the same size it was before, on every insert.
// -----------------------------------------------------------------
const typename TypeParam::size_type kSize = 1<<10; // Pick any power of 2
const float kResize = 0.8f; // anything between 0.5 and 1 is fine.
const int kThreshold = static_cast<int>(kSize * kResize - 1);
this->ht_.set_resizing_parameters(0, kResize);
this->ht_.set_deleted_key(this->UniqueKey(kThreshold + 100));
// Get right up to the resizing threshold.
for (int i = 0; i <= kThreshold; i++) {
this->ht_.insert(this->UniqueObject(i+1));
}
// The bucket count should equal kSize.
EXPECT_EQ(kSize, this->ht_.bucket_count());
// Now start doing erase+insert pairs. This should cause us to
// copy the hashtable at most once.
const int pre_copies = this->ht_.num_table_copies();
for (int i = 0; i < static_cast<int>(kSize); i++) {
this->ht_.erase(this->UniqueKey(kThreshold));
this->ht_.insert(this->UniqueObject(kThreshold));
}
EXPECT_LT(this->ht_.num_table_copies(), pre_copies + 2);
// Now create a hashtable where we go right to the threshold, then
// delete everything and do one insert. Even though our hashtable
// is now tiny, we should still have at least kSize buckets, because
// our shrink threshhold is 0.
// -----------------------------------------------------------------
TypeParam ht2;
ht2.set_deleted_key(this->UniqueKey(kThreshold + 100));
ht2.set_resizing_parameters(0, kResize);
EXPECT_LT(ht2.bucket_count(), kSize);
for (int i = 0; i <= kThreshold; i++) {
ht2.insert(this->UniqueObject(i+1));
}
EXPECT_EQ(ht2.bucket_count(), kSize);
for (int i = 0; i <= kThreshold; i++) {
ht2.erase(this->UniqueKey(i+1));
EXPECT_EQ(ht2.bucket_count(), kSize);
}
ht2.insert(this->UniqueObject(kThreshold+2));
EXPECT_GE(ht2.bucket_count(), kSize);
}
TEST(HashtableTest, CXX11)
{
#if !defined(SPP_NO_CXX11_HDR_INITIALIZER_LIST)
{
// Initializer lists
// -----------------
typedef sparse_hash_map<int, int> Smap;
Smap smap({ {1, 1}, {2, 2} });
EXPECT_EQ(smap.size(), 2);
smap = { {1, 1}, {2, 2}, {3, 4} };
EXPECT_EQ(smap.size(), 3);
smap.insert({{5, 1}, {6, 1}});
EXPECT_EQ(smap.size(), 5);
EXPECT_EQ(smap[6], 1);
EXPECT_EQ(smap.at(6), 1);
try
{
EXPECT_EQ(smap.at(999), 1);
}
catch (...)
{};
sparse_hash_set<int> sset({ 1, 3, 4, 5 });
EXPECT_EQ(sset.size(), 4);
}
#endif
}
TEST(HashtableTest, NestedHashtables)
{
// People can do better than to have a hash_map of hash_maps, but we
// should still support it. I try a few different mappings.
sparse_hash_map<string, sparse_hash_map<int, string>, Hasher, Hasher> ht1;
ht1["hi"]; // create a sub-ht with the default values
ht1["lo"][1] = "there";
sparse_hash_map<string, sparse_hash_map<int, string>, Hasher, Hasher>
ht1copy = ht1;
}
TEST(HashtableDeathTest, ResizeOverflow)
{
sparse_hash_map<int, int> ht2;
EXPECT_DEATH(ht2.resize(static_cast<size_t>(-1)), "overflows size_type");
}
TEST(HashtableDeathTest, InsertSizeTypeOverflow)
{
static const int kMax = 256;
vector<int> test_data(kMax);
for (int i = 0; i < kMax; ++i) {
test_data[(size_t)i] = i+1000;
}
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
// Test we are using the correct allocator
EXPECT_TRUE(shs.get_allocator().is_custom_alloc());
// Test size_type overflow in insert(it, it)
EXPECT_DEATH(shs.insert(test_data.begin(), test_data.end()), "overflows size_type");
}
TEST(HashtableDeathTest, InsertMaxSizeOverflow)
{
static const int kMax = 256;
vector<int> test_data(kMax);
for (int i = 0; i < kMax; ++i) {
test_data[(size_t)i] = i+1000;
}
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
// Test max_size overflow
EXPECT_DEATH(shs.insert(test_data.begin(), test_data.begin() + 11), "exceed max_size");
}
TEST(HashtableDeathTest, ResizeSizeTypeOverflow)
{
// Test min-buckets overflow, when we want to resize too close to size_type
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
EXPECT_DEATH(shs.resize(250), "overflows size_type");
}
TEST(HashtableDeathTest, ResizeDeltaOverflow)
{
static const int kMax = 256;
vector<int> test_data(kMax);
for (int i = 0; i < kMax; ++i) {
test_data[(size_t)i] = i+1000;
}
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 255> > shs;
for (int i = 0; i < 9; i++) {
shs.insert(i);
}
EXPECT_DEATH(shs.insert(test_data.begin(), test_data.begin() + 250),
"overflows size_type");
}
// ------------------------------------------------------------------------
// This informational "test" comes last so it's easy to see.
// Also, benchmarks.
TYPED_TEST(HashtableAllTest, ClassSizes)
{
std::cout << "sizeof(" << typeid(TypeParam).name() << "): "
<< sizeof(this->ht_) << "\n";
}
} // unnamed namespace
int main(int, char **)
{
// All the work is done in the static constructors. If they don't
// die, the tests have all passed.
cout << "PASS\n";
return 0;
}