The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

1606 lines
52 KiB

/**
@file
@ingroup cudd
@brief Procedure to subset the given %BDD choosing the shortest paths
(largest cubes) in the %BDD.
@see cuddSubsetHB.c
@author Kavita Ravi
@copyright@parblock
Copyright (c) 1995-2015, Regents of the University of Colorado
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Neither the name of the University of Colorado nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
@endparblock
*/
#include "util.h"
#include "cuddInt.h"
/*---------------------------------------------------------------------------*/
/* Constant declarations */
/*---------------------------------------------------------------------------*/
#define DEFAULT_PAGE_SIZE 2048 /* page size to store the BFS queue element type */
#define DEFAULT_NODE_DIST_PAGE_SIZE 2048 /* page size to store NodeDist_t type */
#define MAXSHORTINT ((DdHalfWord) ~0) /* constant defined to store
* maximum distance of a node
* from the root or the constant
*/
#define INITIAL_PAGES 128 /* number of initial pages for the
* queue/NodeDist_t type */
/*---------------------------------------------------------------------------*/
/* Stucture declarations */
/*---------------------------------------------------------------------------*/
/**
* @brief structure created to store subset results for each node and
* distances with odd and even parity of the node from the root and
* sink.
*
* Main data structure in this procedure.
*/
struct NodeDist {
DdHalfWord oddTopDist;
DdHalfWord evenTopDist;
DdHalfWord oddBotDist;
DdHalfWord evenBotDist;
DdNode *regResult;
DdNode *compResult;
};
/**
@brief assorted information needed by the BuildSubsetBdd procedure.
*/
struct AssortedInfo {
unsigned int maxpath;
int findShortestPath;
int thresholdReached;
st_table *maxpathTable;
int threshold;
};
/**
* @brief Bookkeeping data structure for subsetting algorithm.
*/
struct GlobalInfo {
struct NodeDist **nodeDistPages; /**< pointers to the pages */
int nodeDistPageIndex; /**< index to next element */
int nodeDistPage; /**< index to current page */
int nodeDistPageSize; /**< page size */
int maxNodeDistPages; /**< number of page pointers */
struct NodeDist *currentNodeDistPage; /**< current page */
DdNode ***queuePages; /**< pointers to the pages */
int queuePageIndex; /**< index to next element */
int queuePage; /**< index to current page */
int queuePageSize; /**< page size */
int maxQueuePages; /**< number of page pointers */
DdNode **currentQueuePage; /**< current page */
#ifdef DD_DEBUG
int numCalls;
int hits;
int thishit;
#endif
};
/*---------------------------------------------------------------------------*/
/* Type declarations */
/*---------------------------------------------------------------------------*/
typedef struct NodeDist NodeDist_t;
typedef struct GlobalInfo GlobalInfo_t;
/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Macro declarations */
/*---------------------------------------------------------------------------*/
/** \cond */
/*---------------------------------------------------------------------------*/
/* Static function prototypes */
/*---------------------------------------------------------------------------*/
static void ResizeNodeDistPages (DdManager *dd, GlobalInfo_t *gInfo);
static void ResizeQueuePages (DdManager *dd, GlobalInfo_t *gInfo);
static void CreateTopDist (DdManager *dd, GlobalInfo_t *gInfo, st_table *pathTable, int parentPage, int parentQueueIndex, int topLen, DdNode **childPage, int childQueueIndex, int numParents, FILE *fp);
static int CreateBotDist (DdNode *node, st_table *pathTable, unsigned int *pathLengthArray, FILE *fp);
static st_table * CreatePathTable (DdManager *dd, GlobalInfo_t *gInfo, DdNode *node, unsigned int *pathLengthArray, FILE *fp);
static unsigned int AssessPathLength (unsigned int *pathLengthArray, int threshold, int numVars, unsigned int *excess, FILE *fp);
static DdNode * BuildSubsetBdd (DdManager *dd, GlobalInfo_t *gInfo, st_table *pathTable, DdNode *node, struct AssortedInfo *info, st_table *subsetNodeTable);
static enum st_retval stPathTableDdFree (void *key, void *value, void *arg);
/** \endcond */
/*---------------------------------------------------------------------------*/
/* Definition of Exported functions */
/*---------------------------------------------------------------------------*/
/**
@brief Extracts a dense subset from a %BDD with the shortest paths
heuristic.
@details This procedure tries to preserve the shortest paths of the
input %BDD, because they give many minterms and contribute few nodes.
This procedure may increase the number of nodes in trying to create
the subset or reduce the number of nodes due to recombination as
compared to the original %BDD. Hence the threshold may not be
strictly adhered to. In practice, recombination overshadows the
increase in the number of nodes and results in small BDDs as
compared to the threshold. The hardlimit specifies whether threshold
needs to be strictly adhered to. If it is set to 1, the procedure
ensures that result is never larger than the specified limit but may
be considerably less than the threshold. The value for numVars
should be as close as possible to the size of the support of f for
better efficiency. However, it is safe to pass the value returned by
Cudd_ReadSize for numVars. If 0 is passed, then the value returned
by Cudd_ReadSize is used.
@return a pointer to the %BDD for the subset if successful; NULL
otherwise.
@sideeffect None
@see Cudd_SupersetShortPaths Cudd_SubsetHeavyBranch Cudd_ReadSize
*/
DdNode *
Cudd_SubsetShortPaths(
DdManager * dd /**< manager */,
DdNode * f /**< function to be subset */,
int numVars /**< number of variables in the support of f */,
int threshold /**< maximum number of nodes in the subset */,
int hardlimit /**< flag: 1 if threshold is a hard limit */)
{
DdNode *subset;
do {
dd->reordered = 0;
subset = cuddSubsetShortPaths(dd, f, numVars, threshold, hardlimit);
} while(dd->reordered == 1);
return(subset);
} /* end of Cudd_SubsetShortPaths */
/**
@brief Extracts a dense superset from a %BDD with the shortest paths
heuristic.
@details The procedure is identical to the subset procedure except
for the fact that it receives the complement of the given
function. Extracting the subset of the complement function is
equivalent to extracting the superset of the function. This
procedure tries to preserve the shortest paths of the complement
%BDD, because they give many minterms and contribute few nodes. This
procedure may increase the number of nodes in trying to create the
superset or reduce the number of nodes due to recombination as
compared to the original %BDD. Hence the threshold may not be
strictly adhered to. In practice, recombination overshadows the
increase in the number of nodes and results in small BDDs as
compared to the threshold. The hardlimit specifies whether
threshold needs to be strictly adhered to. If it is set to 1, the
procedure ensures that result is never larger than the specified
limit but may be considerably less than the threshold. The value
for numVars should be as close as possible to the size of the
support of f for better efficiency. However, it is safe to pass the
value returned by Cudd_ReadSize for numVar. If 0 is passed, then
the value returned by Cudd_ReadSize is used.
@return a pointer to the %BDD for the superset if successful; NULL
otherwise.
@sideeffect None
@see Cudd_SubsetShortPaths Cudd_SupersetHeavyBranch Cudd_ReadSize
*/
DdNode *
Cudd_SupersetShortPaths(
DdManager * dd /**< manager */,
DdNode * f /**< function to be superset */,
int numVars /**< number of variables in the support of f */,
int threshold /**< maximum number of nodes in the subset */,
int hardlimit /**< flag: 1 if threshold is a hard limit */)
{
DdNode *subset, *g;
g = Cudd_Not(f);
do {
dd->reordered = 0;
subset = cuddSubsetShortPaths(dd, g, numVars, threshold, hardlimit);
} while(dd->reordered == 1);
return(Cudd_NotCond(subset, (subset != NULL)));
} /* end of Cudd_SupersetShortPaths */
/*---------------------------------------------------------------------------*/
/* Definition of internal functions */
/*---------------------------------------------------------------------------*/
/**
@brief The outermost procedure to return a subset of the given %BDD
with the shortest path lengths.
@details The path lengths are calculated, the maximum allowable path
length is determined and the number of nodes of this path length
that can be used to build a subset. If the threshold is larger than
the size of the original %BDD, the original %BDD is returned.
@sideeffect None
@see Cudd_SubsetShortPaths
*/
DdNode *
cuddSubsetShortPaths(
DdManager * dd /**< %DD manager */,
DdNode * f /**< function to be subset */,
int numVars /**< total number of variables in consideration */,
int threshold /**< maximum number of nodes allowed in the subset */,
int hardlimit /**< flag determining whether threshold should be respected strictly */)
{
GlobalInfo_t gInfo;
st_table *pathTable;
DdNode *N, *subset;
unsigned int *pathLengthArray;
unsigned int maxpath, oddLen, evenLen, pathLength, *excess;
int i;
NodeDist_t *nodeStat;
struct AssortedInfo *info;
st_table *subsetNodeTable;
gInfo.nodeDistPageSize = DEFAULT_NODE_DIST_PAGE_SIZE;
gInfo.queuePageSize = DEFAULT_PAGE_SIZE;
if (numVars == 0) {
/* set default value */
numVars = Cudd_ReadSize(dd);
}
if (threshold > numVars) {
threshold = threshold - numVars;
}
if (f == NULL) {
fprintf(dd->err, "Cannot partition, nil object\n");
dd->errorCode = CUDD_INVALID_ARG;
return(NULL);
}
if (Cudd_IsConstantInt(f))
return (f);
pathLengthArray = ALLOC(unsigned int, numVars+1);
for (i = 0; i < numVars+1; i++) pathLengthArray[i] = 0;
#ifdef DD_DEBUG
gInfo.numCalls = 0;
#endif
pathTable = CreatePathTable(dd, &gInfo, f, pathLengthArray, dd->err);
if ((pathTable == NULL) || (dd->errorCode == CUDD_MEMORY_OUT)) {
if (pathTable != NULL)
st_free_table(pathTable);
FREE(pathLengthArray);
return (NIL(DdNode));
}
excess = ALLOC(unsigned int, 1);
*excess = 0;
maxpath = AssessPathLength(pathLengthArray, threshold, numVars, excess,
dd->err);
if (maxpath != (unsigned) (numVars + 1)) {
info = ALLOC(struct AssortedInfo, 1);
info->maxpath = maxpath;
info->findShortestPath = 0;
info->thresholdReached = *excess;
info->maxpathTable = st_init_table(st_ptrcmp, st_ptrhash);
info->threshold = threshold;
#ifdef DD_DEBUG
(void) fprintf(dd->out, "Path length array\n");
for (i = 0; i < (numVars+1); i++) {
if (pathLengthArray[i])
(void) fprintf(dd->out, "%d ",i);
}
(void) fprintf(dd->out, "\n");
for (i = 0; i < (numVars+1); i++) {
if (pathLengthArray[i])
(void) fprintf(dd->out, "%d ",pathLengthArray[i]);
}
(void) fprintf(dd->out, "\n");
(void) fprintf(dd->out, "Maxpath = %d, Thresholdreached = %d\n",
maxpath, info->thresholdReached);
#endif
N = Cudd_Regular(f);
if (!st_lookup(pathTable, N, (void **) &nodeStat)) {
fprintf(dd->err, "Something wrong, root node must be in table\n");
dd->errorCode = CUDD_INTERNAL_ERROR;
FREE(excess);
FREE(info);
return(NULL);
} else {
if ((nodeStat->oddTopDist != MAXSHORTINT) &&
(nodeStat->oddBotDist != MAXSHORTINT))
oddLen = (nodeStat->oddTopDist + nodeStat->oddBotDist);
else
oddLen = MAXSHORTINT;
if ((nodeStat->evenTopDist != MAXSHORTINT) &&
(nodeStat->evenBotDist != MAXSHORTINT))
evenLen = (nodeStat->evenTopDist +nodeStat->evenBotDist);
else
evenLen = MAXSHORTINT;
pathLength = (oddLen <= evenLen) ? oddLen : evenLen;
if (pathLength > maxpath) {
(void) fprintf(dd->err, "All computations are bogus, since root has path length greater than max path length within threshold %u, %u\n", maxpath, pathLength);
dd->errorCode = CUDD_INTERNAL_ERROR;
return(NULL);
}
}
#ifdef DD_DEBUG
gInfo.numCalls = 0;
gInfo.hits = 0;
gInfo.thishit = 0;
#endif
/* initialize a table to store computed nodes */
if (hardlimit) {
subsetNodeTable = st_init_table(st_ptrcmp, st_ptrhash);
} else {
subsetNodeTable = NIL(st_table);
}
subset = BuildSubsetBdd(dd, &gInfo, pathTable, f, info, subsetNodeTable);
if (subset != NULL) {
cuddRef(subset);
}
/* record the number of times a computed result for a node is hit */
#ifdef DD_DEBUG
(void) fprintf(dd->out, "Hits = %d, New==Node = %d, NumCalls = %d\n",
gInfo.hits, gInfo.thishit, gInfo.numCalls);
#endif
if (subsetNodeTable != NIL(st_table)) {
st_free_table(subsetNodeTable);
}
st_free_table(info->maxpathTable);
st_foreach(pathTable, stPathTableDdFree, (void *)dd);
FREE(info);
} else {/* if threshold larger than size of dd */
subset = f;
cuddRef(subset);
}
FREE(excess);
st_free_table(pathTable);
FREE(pathLengthArray);
for (i = 0; i <= gInfo.nodeDistPage; i++) FREE(gInfo.nodeDistPages[i]);
FREE(gInfo.nodeDistPages);
#ifdef DD_DEBUG
/* check containment of subset in f */
if (subset != NULL) {
if (!Cudd_bddLeq(dd, subset, f)) {
(void) fprintf(dd->err, "Wrong partition\n");
dd->errorCode = CUDD_INTERNAL_ERROR;
return(NULL);
}
}
#endif
if (subset != NULL) {
cuddDeref(subset);
return(subset);
} else {
return(NULL);
}
} /* end of cuddSubsetShortPaths */
/*---------------------------------------------------------------------------*/
/* Definition of static functions */
/*---------------------------------------------------------------------------*/
/**
@brief Resize the number of pages allocated to store the distances
related to each node.
@details The procedure moves the counter to the next page when the
end of the page is reached and allocates new pages when necessary.
@sideeffect Changes the size of pages, page, page index, maximum
number of pages freeing stuff in case of memory out.
*/
static void
ResizeNodeDistPages(
DdManager *dd /**< %DD manager */,
GlobalInfo_t *gInfo /**< global information */)
{
int i;
NodeDist_t **newNodeDistPages;
/* move to next page */
gInfo->nodeDistPage++;
/* If the current page index is larger than the number of pages
* allocated, allocate a new page array. Page numbers are incremented by
* INITIAL_PAGES
*/
if (gInfo->nodeDistPage == gInfo->maxNodeDistPages) {
newNodeDistPages = ALLOC(NodeDist_t *,gInfo->maxNodeDistPages + INITIAL_PAGES);
if (newNodeDistPages == NULL) {
for (i = 0; i < gInfo->nodeDistPage; i++) FREE(gInfo->nodeDistPages[i]);
FREE(gInfo->nodeDistPages);
dd->errorCode = CUDD_MEMORY_OUT;
return;
} else {
for (i = 0; i < gInfo->maxNodeDistPages; i++) {
newNodeDistPages[i] = gInfo->nodeDistPages[i];
}
/* Increase total page count */
gInfo->maxNodeDistPages += INITIAL_PAGES;
FREE(gInfo->nodeDistPages);
gInfo->nodeDistPages = newNodeDistPages;
}
}
/* Allocate a new page */
gInfo->currentNodeDistPage = gInfo->nodeDistPages[gInfo->nodeDistPage] =
ALLOC(NodeDist_t, gInfo->nodeDistPageSize);
if (gInfo->currentNodeDistPage == NULL) {
for (i = 0; i < gInfo->nodeDistPage; i++) FREE(gInfo->nodeDistPages[i]);
FREE(gInfo->nodeDistPages);
dd->errorCode = CUDD_MEMORY_OUT;
return;
}
/* reset page index */
gInfo->nodeDistPageIndex = 0;
return;
} /* end of ResizeNodeDistPages */
/**
@brief Resize the number of pages allocated to store nodes in the BFS
traversal of the %BDD.
@details The procedure moves the counter to the next page when the
end of the page is reached and allocates new pages when necessary.
@sideeffect Changes the size of pages, page, page index, maximum
number of pages freeing stuff in case of memory out.
*/
static void
ResizeQueuePages(
DdManager *dd /**< %DD manager */,
GlobalInfo_t *gInfo /**< global information */)
{
int i;
DdNode ***newQueuePages;
gInfo->queuePage++;
/* If the current page index is larger than the number of pages
* allocated, allocate a new page array. Page numbers are incremented by
* INITIAL_PAGES
*/
if (gInfo->queuePage == gInfo->maxQueuePages) {
newQueuePages = ALLOC(DdNode **,gInfo->maxQueuePages + INITIAL_PAGES);
if (newQueuePages == NULL) {
for (i = 0; i < gInfo->queuePage; i++) FREE(gInfo->queuePages[i]);
FREE(gInfo->queuePages);
dd->errorCode = CUDD_MEMORY_OUT;
return;
} else {
for (i = 0; i < gInfo->maxQueuePages; i++) {
newQueuePages[i] = gInfo->queuePages[i];
}
/* Increase total page count */
gInfo->maxQueuePages += INITIAL_PAGES;
FREE(gInfo->queuePages);
gInfo->queuePages = newQueuePages;
}
}
/* Allocate a new page */
gInfo->currentQueuePage = gInfo->queuePages[gInfo->queuePage] =
ALLOC(DdNode *,gInfo->queuePageSize);
if (gInfo->currentQueuePage == NULL) {
for (i = 0; i < gInfo->queuePage; i++) FREE(gInfo->queuePages[i]);
FREE(gInfo->queuePages);
dd->errorCode = CUDD_MEMORY_OUT;
return;
}
/* reset page index */
gInfo->queuePageIndex = 0;
return;
} /* end of ResizeQueuePages */
/**
@brief Labels each node with its shortest distance from the root.
@details This is done in a BFS search of the %BDD. The nodes are
processed in a queue implemented as pages(array) to reduce memory
fragmentation. An entry is created for each node visited. The
distance from the root to the node with the corresponding parity is
updated. The procedure is called recursively each recusion level
handling nodes at a given level from the root.
@sideeffect Creates entries in the pathTable
@see CreatePathTable CreateBotDist
*/
static void
CreateTopDist(
DdManager *dd /**< %DD manager */,
GlobalInfo_t *gInfo /**< global information */,
st_table * pathTable /**< hash table to store path lengths */,
int parentPage /**< the pointer to the page on which the first parent in the queue is to be found. */,
int parentQueueIndex /**< pointer to the first parent on the page */,
int topLen /**< current distance from the root */,
DdNode ** childPage /**< pointer to the page on which the first child is to be added. */,
int childQueueIndex /**< pointer to the first child */,
int numParents /**< number of parents to process in this recursive call */,
FILE *fp /**< where to write messages */)
{
NodeDist_t *nodeStat;
DdNode *N, *Nv, *Nnv, *node, *child, *regChild;
int i;
int processingDone, childrenCount;
#ifdef DD_DEBUG
gInfo->numCalls++;
/* assume this procedure comes in with only the root node*/
/* set queue index to the next available entry for addition */
/* set queue page to page of addition */
if ((gInfo->queuePages[parentPage] == childPage) && (parentQueueIndex ==
childQueueIndex)) {
fprintf(fp, "Should not happen that they are equal\n");
}
assert(gInfo->queuePageIndex == childQueueIndex);
assert(gInfo->currentQueuePage == childPage);
#endif
/* number children added to queue is initialized , needed for
* numParents in the next call
*/
childrenCount = 0;
/* process all the nodes in this level */
while (numParents) {
numParents--;
if (parentQueueIndex == gInfo->queuePageSize) {
parentPage++;
parentQueueIndex = 0;
}
/* a parent to process */
node = *(gInfo->queuePages[parentPage] + parentQueueIndex);
parentQueueIndex++;
/* get its children */
N = Cudd_Regular(node);
Nv = Cudd_T(N);
Nnv = Cudd_E(N);
Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node));
Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node));
processingDone = 2;
while (processingDone) {
/* processing the THEN and the ELSE children, the THEN
* child first
*/
if (processingDone == 2) {
child = Nv;
} else {
child = Nnv;
}
regChild = Cudd_Regular(child);
/* dont process if the child is a constant */
if (!Cudd_IsConstantInt(child)) {
/* check is already visited, if not add a new entry in
* the path Table
*/
if (!st_lookup(pathTable, regChild, (void **) &nodeStat)) {
/* if not in table, has never been visited */
/* create entry for table */
if (gInfo->nodeDistPageIndex == gInfo->nodeDistPageSize)
ResizeNodeDistPages(dd, gInfo);
if (dd->errorCode == CUDD_MEMORY_OUT) {
for (i = 0; i <= gInfo->queuePage; i++) FREE(gInfo->queuePages[i]);
FREE(gInfo->queuePages);
st_free_table(pathTable);
return;
}
/* New entry for child in path Table is created here */
nodeStat = gInfo->currentNodeDistPage + gInfo->nodeDistPageIndex;
gInfo->nodeDistPageIndex++;
/* Initialize fields of the node data */
nodeStat->oddTopDist = MAXSHORTINT;
nodeStat->evenTopDist = MAXSHORTINT;
nodeStat->evenBotDist = MAXSHORTINT;
nodeStat->oddBotDist = MAXSHORTINT;
nodeStat->regResult = NULL;
nodeStat->compResult = NULL;
/* update the table entry element, the distance keeps
* track of the parity of the path from the root
*/
if (Cudd_IsComplement(child)) {
nodeStat->oddTopDist = (DdHalfWord) topLen + 1;
} else {
nodeStat->evenTopDist = (DdHalfWord) topLen + 1;
}
/* insert entry element for child in the table */
if (st_insert(pathTable, regChild,
nodeStat) == ST_OUT_OF_MEM) {
dd->errorCode = CUDD_MEMORY_OUT;
for (i = 0; i <= gInfo->nodeDistPage; i++)
FREE(gInfo->nodeDistPages[i]);
FREE(gInfo->nodeDistPages);
for (i = 0; i <= gInfo->queuePage; i++) FREE(gInfo->queuePages[i]);
FREE(gInfo->queuePages);
st_free_table(pathTable);
return;
}
/* Create list element for this child to process its children.
* If this node has been processed already, then it appears
* in the path table and hence is never added to the list
* again.
*/
if (gInfo->queuePageIndex == gInfo->queuePageSize) ResizeQueuePages(dd, gInfo);
if (dd->errorCode == CUDD_MEMORY_OUT) {
for (i = 0; i <= gInfo->nodeDistPage; i++)
FREE(gInfo->nodeDistPages[i]);
FREE(gInfo->nodeDistPages);
st_free_table(pathTable);
return;
}
*(gInfo->currentQueuePage + gInfo->queuePageIndex) = child;
gInfo->queuePageIndex++;
childrenCount++;
} else {
/* if not been met in a path with this parity before */
/* put in list */
if (((Cudd_IsComplement(child)) && (nodeStat->oddTopDist ==
MAXSHORTINT)) || ((!Cudd_IsComplement(child)) &&
(nodeStat->evenTopDist == MAXSHORTINT))) {
if (gInfo->queuePageIndex == gInfo->queuePageSize) ResizeQueuePages(dd, gInfo);
if (dd->errorCode == CUDD_MEMORY_OUT) {
for (i = 0; i <= gInfo->nodeDistPage; i++)
FREE(gInfo->nodeDistPages[i]);
FREE(gInfo->nodeDistPages);
st_free_table(pathTable);
return;
}
*(gInfo->currentQueuePage + gInfo->queuePageIndex) = child;
gInfo->queuePageIndex++;
/* update the distance with the appropriate parity */
if (Cudd_IsComplement(child)) {
nodeStat->oddTopDist = (DdHalfWord) topLen + 1;
} else {
nodeStat->evenTopDist = (DdHalfWord) topLen + 1;
}
childrenCount++;
}
} /* end of else (not found in st_table) */
} /*end of if Not constant child */
processingDone--;
} /*end of while processing Nv, Nnv */
} /*end of while numParents */
#ifdef DD_DEBUG
assert(gInfo->queuePages[parentPage] == childPage);
assert(parentQueueIndex == childQueueIndex);
#endif
if (childrenCount != 0) {
topLen++;
childPage = gInfo->currentQueuePage;
childQueueIndex = gInfo->queuePageIndex;
CreateTopDist(dd, gInfo, pathTable, parentPage, parentQueueIndex, topLen,
childPage, childQueueIndex, childrenCount, fp);
}
return;
} /* end of CreateTopDist */
/**
@brief Labels each node with the shortest distance from the constant.
@details This is done in a DFS search of the %BDD. Each node has an
odd and even parity distance from the sink (since there exists paths
to both zero and one) which is less than MAXSHORTINT. At each node
these distances are updated using the minimum distance of its
children from the constant. SInce now both the length from the root
and child is known, the minimum path length(length of the shortest
path between the root and the constant that this node lies on) of
this node can be calculated and used to update the pathLengthArray.
@sideeffect Updates Path Table and path length array
@see CreatePathTable CreateTopDist AssessPathLength
*/
static int
CreateBotDist(
DdNode * node /* current node */,
st_table * pathTable /* path table with path lengths */,
unsigned int * pathLengthArray /* array that stores number of nodes belonging to a particular path length. */,
FILE *fp /* where to write messages */)
{
DdNode *N, *Nv, *Nnv;
DdNode *realChild;
DdNode *child, *regChild;
NodeDist_t *nodeStat, *nodeStatChild;
unsigned int oddLen, evenLen, pathLength;
DdHalfWord botDist;
int processingDone;
if (Cudd_IsConstantInt(node))
return(1);
N = Cudd_Regular(node);
/* each node has one table entry */
/* update as you go down the min dist of each node from
the root in each (odd and even) parity */
if (!st_lookup(pathTable, N, (void **) &nodeStat)) {
fprintf(fp, "Something wrong, the entry doesn't exist\n");
return(0);
}
/* compute length of odd parity distances */
if ((nodeStat->oddTopDist != MAXSHORTINT) &&
(nodeStat->oddBotDist != MAXSHORTINT))
oddLen = (nodeStat->oddTopDist + nodeStat->oddBotDist);
else
oddLen = MAXSHORTINT;
/* compute length of even parity distances */
if (!((nodeStat->evenTopDist == MAXSHORTINT) ||
(nodeStat->evenBotDist == MAXSHORTINT)))
evenLen = (nodeStat->evenTopDist +nodeStat->evenBotDist);
else
evenLen = MAXSHORTINT;
/* assign pathlength to minimum of the two */
pathLength = (oddLen <= evenLen) ? oddLen : evenLen;
Nv = Cudd_T(N);
Nnv = Cudd_E(N);
/* process each child */
processingDone = 0;
while (processingDone != 2) {
if (!processingDone) {
child = Nv;
} else {
child = Nnv;
}
realChild = Cudd_NotCond(child, Cudd_IsComplement(node));
regChild = Cudd_Regular(child);
if (Cudd_IsConstantInt(realChild)) {
/* Found a minterm; count parity and shortest distance
** from the constant.
*/
if (Cudd_IsComplement(child))
nodeStat->oddBotDist = 1;
else
nodeStat->evenBotDist = 1;
} else {
/* If node not in table, recur. */
if (!st_lookup(pathTable, regChild, (void **) &nodeStatChild)) {
fprintf(fp, "Something wrong, node in table should have been created in top dist proc.\n");
return(0);
}
if (nodeStatChild->oddBotDist == MAXSHORTINT) {
if (nodeStatChild->evenBotDist == MAXSHORTINT) {
if (!CreateBotDist(realChild, pathTable, pathLengthArray, fp))
return(0);
} else {
fprintf(fp, "Something wrong, both bot nodeStats should be there\n");
return(0);
}
}
/* Update shortest distance from the constant depending on
** parity. */
if (Cudd_IsComplement(child)) {
/* If parity on the edge then add 1 to even distance
** of child to get odd parity distance and add 1 to
** odd distance of child to get even parity
** distance. Change distance of current node only if
** the calculated distance is less than existing
** distance. */
if (nodeStatChild->oddBotDist != MAXSHORTINT)
botDist = nodeStatChild->oddBotDist + 1;
else
botDist = MAXSHORTINT;
if (nodeStat->evenBotDist > botDist )
nodeStat->evenBotDist = botDist;
if (nodeStatChild->evenBotDist != MAXSHORTINT)
botDist = nodeStatChild->evenBotDist + 1;
else
botDist = MAXSHORTINT;
if (nodeStat->oddBotDist > botDist)
nodeStat->oddBotDist = botDist;
} else {
/* If parity on the edge then add 1 to even distance
** of child to get even parity distance and add 1 to
** odd distance of child to get odd parity distance.
** Change distance of current node only if the
** calculated distance is lesser than existing
** distance. */
if (nodeStatChild->evenBotDist != MAXSHORTINT)
botDist = nodeStatChild->evenBotDist + 1;
else
botDist = MAXSHORTINT;
if (nodeStat->evenBotDist > botDist)
nodeStat->evenBotDist = botDist;
if (nodeStatChild->oddBotDist != MAXSHORTINT)
botDist = nodeStatChild->oddBotDist + 1;
else
botDist = MAXSHORTINT;
if (nodeStat->oddBotDist > botDist)
nodeStat->oddBotDist = botDist;
}
} /* end of else (if not constant child ) */
processingDone++;
} /* end of while processing Nv, Nnv */
/* Compute shortest path length on the fly. */
if ((nodeStat->oddTopDist != MAXSHORTINT) &&
(nodeStat->oddBotDist != MAXSHORTINT))
oddLen = (nodeStat->oddTopDist + nodeStat->oddBotDist);
else
oddLen = MAXSHORTINT;
if ((nodeStat->evenTopDist != MAXSHORTINT) &&
(nodeStat->evenBotDist != MAXSHORTINT))
evenLen = (nodeStat->evenTopDist +nodeStat->evenBotDist);
else
evenLen = MAXSHORTINT;
/* Update path length array that has number of nodes of a particular
** path length. */
if (oddLen < pathLength ) {
if (pathLength != MAXSHORTINT)
pathLengthArray[pathLength]--;
if (oddLen != MAXSHORTINT)
pathLengthArray[oddLen]++;
pathLength = oddLen;
}
if (evenLen < pathLength ) {
if (pathLength != MAXSHORTINT)
pathLengthArray[pathLength]--;
if (evenLen != MAXSHORTINT)
pathLengthArray[evenLen]++;
}
return(1);
} /*end of CreateBotDist */
/**
@brief The outer procedure to label each node with its shortest
distance from the root and constant
@details Calls CreateTopDist and CreateBotDist. The basis for
computing the distance between root and constant is that the
distance may be the sum of even distances from the node to the root
and constant or the sum of odd distances from the node to the root
and constant. Both CreateTopDist and CreateBotDist create the odd
and even parity distances from the root and constant respectively.
@sideeffect None
@see CreateTopDist CreateBotDist
*/
static st_table *
CreatePathTable(
DdManager *dd /**< %DD manager */,
GlobalInfo_t *gInfo /**< global information */,
DdNode * node /**< root of function */,
unsigned int * pathLengthArray /**< array of path lengths to store nodes labeled with the various path lengths */,
FILE *fp /**< where to write messages */)
{
st_table *pathTable;
NodeDist_t *nodeStat;
DdHalfWord topLen;
DdNode *N;
int i, numParents;
int insertValue;
DdNode **childPage;
int parentPage;
int childQueueIndex, parentQueueIndex;
/* Creating path table for storing data about nodes */
pathTable = st_init_table(st_ptrcmp,st_ptrhash);
/* Initializing pages for info about each node */
gInfo->maxNodeDistPages = INITIAL_PAGES;
gInfo->nodeDistPages = ALLOC(NodeDist_t *, gInfo->maxNodeDistPages);
if (gInfo->nodeDistPages == NULL) {
goto OUT_OF_MEM;
}
assert(gInfo->nodeDistPageSize > 0);
gInfo->nodeDistPage = 0;
gInfo->currentNodeDistPage = gInfo->nodeDistPages[gInfo->nodeDistPage] =
ALLOC(NodeDist_t, gInfo->nodeDistPageSize);
if (gInfo->currentNodeDistPage == NULL) {
for (i = 0; i <= gInfo->nodeDistPage; i++) FREE(gInfo->nodeDistPages[i]);
FREE(gInfo->nodeDistPages);
goto OUT_OF_MEM;
}
gInfo->nodeDistPageIndex = 0;
/* Initializing pages for the BFS search queue, implemented as an array. */
gInfo->maxQueuePages = INITIAL_PAGES;
gInfo->queuePages = ALLOC(DdNode **, gInfo->maxQueuePages);
if (gInfo->queuePages == NULL) {
goto OUT_OF_MEM;
}
assert(gInfo->queuePageSize > 0);
gInfo->queuePage = 0;
gInfo->currentQueuePage = gInfo->queuePages[gInfo->queuePage] =
ALLOC(DdNode *, gInfo->queuePageSize);
if (gInfo->currentQueuePage == NULL) {
for (i = 0; i <= gInfo->queuePage; i++) FREE(gInfo->queuePages[i]);
FREE(gInfo->queuePages);
goto OUT_OF_MEM;
}
gInfo->queuePageIndex = 0;
/* Enter the root node into the queue to start with. */
parentPage = gInfo->queuePage;
parentQueueIndex = gInfo->queuePageIndex;
topLen = 0;
*(gInfo->currentQueuePage + gInfo->queuePageIndex) = node;
gInfo->queuePageIndex++;
childPage = gInfo->currentQueuePage;
childQueueIndex = gInfo->queuePageIndex;
N = Cudd_Regular(node);
if (gInfo->nodeDistPageIndex == gInfo->nodeDistPageSize)
ResizeNodeDistPages(dd, gInfo);
if (dd->errorCode == CUDD_MEMORY_OUT) {
if (gInfo->nodeDistPages != NULL) {
for (i = 0; i <= gInfo->nodeDistPage; i++)
FREE(gInfo->nodeDistPages[i]);
FREE(gInfo->nodeDistPages);
}
for (i = 0; i <= gInfo->queuePage; i++) FREE(gInfo->queuePages[i]);
FREE(gInfo->queuePages);
st_free_table(pathTable);
goto OUT_OF_MEM;
}
nodeStat = gInfo->currentNodeDistPage + gInfo->nodeDistPageIndex;
gInfo->nodeDistPageIndex++;
nodeStat->oddTopDist = MAXSHORTINT;
nodeStat->evenTopDist = MAXSHORTINT;
nodeStat->evenBotDist = MAXSHORTINT;
nodeStat->oddBotDist = MAXSHORTINT;
nodeStat->regResult = NULL;
nodeStat->compResult = NULL;
insertValue = st_insert(pathTable, N, nodeStat);
if (insertValue == ST_OUT_OF_MEM) {
dd->errorCode = CUDD_MEMORY_OUT;
for (i = 0; i <= gInfo->nodeDistPage; i++) FREE(gInfo->nodeDistPages[i]);
FREE(gInfo->nodeDistPages);
for (i = 0; i <= gInfo->queuePage; i++) FREE(gInfo->queuePages[i]);
FREE(gInfo->queuePages);
st_free_table(pathTable);
goto OUT_OF_MEM;
} else if (insertValue == 1) {
fprintf(fp, "Something wrong, the entry exists but didnt show up in st_lookup\n");
return(NULL);
}
if (Cudd_IsComplement(node)) {
nodeStat->oddTopDist = 0;
} else {
nodeStat->evenTopDist = 0;
}
numParents = 1;
/* call the function that counts the distance of each node from the
* root
*/
#ifdef DD_DEBUG
gInfo->numCalls = 0;
#endif
CreateTopDist(dd, gInfo, pathTable, parentPage, parentQueueIndex, (int) topLen,
childPage, childQueueIndex, numParents, fp);
if (dd->errorCode == CUDD_MEMORY_OUT) {
fprintf(fp, "Out of Memory and cant count path lengths\n");
goto OUT_OF_MEM;
}
#ifdef DD_DEBUG
gInfo->numCalls = 0;
#endif
/* call the function that counts the distance of each node from the
* constant
*/
if (!CreateBotDist(node, pathTable, pathLengthArray, fp)) return(NULL);
/* free BFS queue pages as no longer required */
for (i = 0; i <= gInfo->queuePage; i++) FREE(gInfo->queuePages[i]);
FREE(gInfo->queuePages);
return(pathTable);
OUT_OF_MEM:
(void) fprintf(fp, "Out of Memory, cannot allocate pages\n");
dd->errorCode = CUDD_MEMORY_OUT;
return(NULL);
} /*end of CreatePathTable */
/**
@brief Chooses the maximum allowable path length of nodes under the
threshold.
@details The corner cases are when the threshold is larger than the
number of nodes in the %BDD iself, in which case 'numVars + 1' is
returned. If all nodes of a particular path length are needed, then
the maxpath returned is the next one with excess nodes = 0.
@sideeffect None
*/
static unsigned int
AssessPathLength(
unsigned int * pathLengthArray /* array determining number of nodes belonging to the different path lengths */,
int threshold /* threshold to determine maximum allowable nodes in the subset */,
int numVars /* maximum number of variables */,
unsigned int * excess /* number of nodes labeled maxpath required in the subset */,
FILE *fp /* where to write messages */)
{
unsigned int i, maxpath;
int temp;
temp = threshold;
i = 0;
maxpath = 0;
/* quit loop if i reaches max number of variables or if temp reaches
* below zero
*/
while ((i < (unsigned) numVars+1) && (temp > 0)) {
if (pathLengthArray[i] > 0) {
maxpath = i;
temp = temp - pathLengthArray[i];
}
i++;
}
/* if all nodes of max path are needed */
if (temp >= 0) {
maxpath++; /* now maxpath becomes the next maxppath or max number
of variables */
*excess = 0;
} else { /* normal case when subset required is less than size of
original BDD */
*excess = temp + pathLengthArray[maxpath];
}
if (maxpath == 0) {
fprintf(fp, "Path Length array seems to be all zeroes, check\n");
}
return(maxpath);
} /* end of AssessPathLength */
/**
@brief Builds the %BDD with nodes labeled with path length less than
or equal to maxpath.
@details Builds the %BDD with nodes labeled with path length
under maxpath and as many nodes labeled maxpath as determined by the
threshold. The procedure uses the path table to determine which nodes
in the original bdd need to be retained. This procedure picks a
shortest path (tie break decided by taking the child with the shortest
distance to the constant) and recurs down the path till it reaches the
constant. the procedure then starts building the subset upward from
the constant. All nodes labeled by path lengths less than the given
maxpath are used to build the subset. However, in the case of nodes
that have label equal to maxpath, as many are chosen as required by
the threshold. This number is stored in the info structure in the
field thresholdReached. This field is decremented whenever a node
labeled maxpath is encountered and the nodes labeled maxpath are
aggregated in a maxpath table. As soon as the thresholdReached count
goes to 0, the shortest path from this node to the constant is found.
The extraction of nodes with the above labeling is based on the fact
that each node, labeled with a path length, P, has at least one child
labeled P or less. So extracting all nodes labeled a given path length
P ensures complete paths between the root and the constant. Extraction
of a partial number of nodes with a given path length may result in
incomplete paths and hence the additional number of nodes are grabbed
to complete the path. Since the Bdd is built bottom-up, other nodes
labeled maxpath do lie on complete paths. The procedure may cause the
subset to have a larger or smaller number of nodes than the specified
threshold. The increase in the number of nodes is caused by the
building of a subset and the reduction by recombination. However in
most cases, the recombination overshadows the increase and the
procedure returns a result with lower number of nodes than specified.
The subsetNodeTable is NIL when there is no hard limit on the number
of nodes. Further efforts towards keeping the subset closer to the
threshold number were abandoned in favour of keeping the procedure
simple and fast.
@sideeffect SubsetNodeTable is changed if it is not NIL.
*/
static DdNode *
BuildSubsetBdd(
DdManager * dd /**< %DD manager */,
GlobalInfo_t *gInfo /**< global information */,
st_table * pathTable /**< path table with path lengths and computed results */,
DdNode * node /**< current node */,
struct AssortedInfo * info /**< assorted information structure */,
st_table * subsetNodeTable /**< table storing computed results */)
{
DdNode *N, *Nv, *Nnv;
DdNode *ThenBranch, *ElseBranch, *childBranch;
DdNode *child = NULL, *regChild = NULL, *regNnv = NULL, *regNv = NULL;
NodeDist_t *nodeStatNv, *nodeStat, *nodeStatNnv;
DdNode *neW, *topv, *regNew;
char *entry;
int topid;
unsigned int childPathLength, oddLen, evenLen;
unsigned int NnvPathLength = 0, NvPathLength = 0;
unsigned int NvBotDist, NnvBotDist;
int tiebreakChild;
int processingDone, thenDone;
DdNode *zero = Cudd_Not(DD_ONE(dd));
#ifdef DD_DEBUG
gInfo->numCalls++;
#endif
if (Cudd_IsConstantInt(node))
return(node);
N = Cudd_Regular(node);
/* Find node in table. */
if (!st_lookup(pathTable, N, (void **) &nodeStat)) {
(void) fprintf(dd->err, "Something wrong, node must be in table \n");
dd->errorCode = CUDD_INTERNAL_ERROR;
return(NULL);
}
/* If the node in the table has been visited, then return the corresponding
** Dd. Since a node can become a subset of itself, its
** complement (that is te same node reached by a different parity) will
** become a superset of the original node and result in some minterms
** that were not in the original set. Hence two different results are
** maintained, corresponding to the odd and even parities.
*/
/* If this node is reached with an odd parity, get odd parity results. */
if (Cudd_IsComplement(node)) {
if (nodeStat->compResult != NULL) {
#ifdef DD_DEBUG
gInfo->hits++;
#endif
return(nodeStat->compResult);
}
} else {
/* if this node is reached with an even parity, get even parity
* results
*/
if (nodeStat->regResult != NULL) {
#ifdef DD_DEBUG
gInfo->hits++;
#endif
return(nodeStat->regResult);
}
}
/* get children */
Nv = Cudd_T(N);
Nnv = Cudd_E(N);
Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node));
Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node));
/* no child processed */
processingDone = 0;
/* then child not processed */
thenDone = 0;
ThenBranch = NULL;
/* else child not processed */
ElseBranch = NULL;
/* if then child constant, branch is the child */
if (Cudd_IsConstantInt(Nv)) {
/*shortest path found */
if ((Nv == DD_ONE(dd)) && (info->findShortestPath)) {
info->findShortestPath = 0;
}
ThenBranch = Nv;
cuddRef(ThenBranch);
if (ThenBranch == NULL) {
return(NULL);
}
thenDone++;
processingDone++;
NvBotDist = MAXSHORTINT;
} else {
/* Derive regular child for table lookup. */
regNv = Cudd_Regular(Nv);
/* Get node data for shortest path length. */
if (!st_lookup(pathTable, regNv, (void **) &nodeStatNv) ) {
(void) fprintf(dd->err, "Something wrong, node must be in table\n");
dd->errorCode = CUDD_INTERNAL_ERROR;
return(NULL);
}
/* Derive shortest path length for child. */
if ((nodeStatNv->oddTopDist != MAXSHORTINT) &&
(nodeStatNv->oddBotDist != MAXSHORTINT)) {
oddLen = (nodeStatNv->oddTopDist + nodeStatNv->oddBotDist);
} else {
oddLen = MAXSHORTINT;
}
if ((nodeStatNv->evenTopDist != MAXSHORTINT) &&
(nodeStatNv->evenBotDist != MAXSHORTINT)) {
evenLen = (nodeStatNv->evenTopDist +nodeStatNv->evenBotDist);
} else {
evenLen = MAXSHORTINT;
}
NvPathLength = (oddLen <= evenLen) ? oddLen : evenLen;
NvBotDist = (oddLen <= evenLen) ? nodeStatNv->oddBotDist:
nodeStatNv->evenBotDist;
}
/* if else child constant, branch is the child */
if (Cudd_IsConstantInt(Nnv)) {
/*shortest path found */
if ((Nnv == DD_ONE(dd)) && (info->findShortestPath)) {
info->findShortestPath = 0;
}
ElseBranch = Nnv;
cuddRef(ElseBranch);
if (ElseBranch == NULL) {
return(NULL);
}
processingDone++;
NnvBotDist = MAXSHORTINT;
} else {
/* Derive regular child for table lookup. */
regNnv = Cudd_Regular(Nnv);
/* Get node data for shortest path length. */
if (!st_lookup(pathTable, regNnv, (void **) &nodeStatNnv) ) {
(void) fprintf(dd->err, "Something wrong, node must be in table\n");
dd->errorCode = CUDD_INTERNAL_ERROR;
return(NULL);
}
/* Derive shortest path length for child. */
if ((nodeStatNnv->oddTopDist != MAXSHORTINT) &&
(nodeStatNnv->oddBotDist != MAXSHORTINT)) {
oddLen = (nodeStatNnv->oddTopDist + nodeStatNnv->oddBotDist);
} else {
oddLen = MAXSHORTINT;
}
if ((nodeStatNnv->evenTopDist != MAXSHORTINT) &&
(nodeStatNnv->evenBotDist != MAXSHORTINT)) {
evenLen = (nodeStatNnv->evenTopDist +nodeStatNnv->evenBotDist);
} else {
evenLen = MAXSHORTINT;
}
NnvPathLength = (oddLen <= evenLen) ? oddLen : evenLen;
NnvBotDist = (oddLen <= evenLen) ? nodeStatNnv->oddBotDist :
nodeStatNnv->evenBotDist;
}
tiebreakChild = (NvBotDist <= NnvBotDist) ? 1 : 0;
/* while both children not processed */
while (processingDone != 2) {
if (!processingDone) {
/* if no child processed */
/* pick the child with shortest path length and record which one
* picked
*/
if ((NvPathLength < NnvPathLength) ||
((NvPathLength == NnvPathLength) && (tiebreakChild == 1))) {
child = Nv;
regChild = regNv;
thenDone = 1;
childPathLength = NvPathLength;
} else {
child = Nnv;
regChild = regNnv;
childPathLength = NnvPathLength;
} /* then path length less than else path length */
} else {
/* if one child processed, process the other */
if (thenDone) {
child = Nnv;
regChild = regNnv;
childPathLength = NnvPathLength;
} else {
child = Nv;
regChild = regNv;
thenDone = 1;
childPathLength = NvPathLength;
} /* end of else pick the Then child if ELSE child processed */
} /* end of else one child has been processed */
/* ignore (replace with constant 0) all nodes which lie on paths larger
* than the maximum length of the path required
*/
if (childPathLength > info->maxpath) {
/* record nodes visited */
childBranch = zero;
} else {
if (childPathLength < info->maxpath) {
if (info->findShortestPath) {
info->findShortestPath = 0;
}
childBranch = BuildSubsetBdd(dd, gInfo, pathTable, child, info,
subsetNodeTable);
} else { /* Case: path length of node = maxpath */
/* If the node labeled with maxpath is found in the
** maxpathTable, use it to build the subset BDD. */
if (st_lookup(info->maxpathTable, regChild, (void **) &entry)) {
/* When a node that is already been chosen is hit,
** the quest for a complete path is over. */
if (info->findShortestPath) {
info->findShortestPath = 0;
}
childBranch = BuildSubsetBdd(dd, gInfo, pathTable, child, info,
subsetNodeTable);
} else {
/* If node is not found in the maxpathTable and
** the threshold has been reached, then if the
** path needs to be completed, continue. Else
** replace the node with a zero. */
if (info->thresholdReached <= 0) {
if (info->findShortestPath) {
if (st_insert(info->maxpathTable, regChild,
NULL) == ST_OUT_OF_MEM) {
dd->errorCode = CUDD_MEMORY_OUT;
(void) fprintf(dd->err, "OUT of memory\n");
info->thresholdReached = 0;
childBranch = zero;
} else {
info->thresholdReached--;
childBranch = BuildSubsetBdd(dd, gInfo, pathTable,
child, info,subsetNodeTable);
}
} else { /* not find shortest path, we dont need this
node */
childBranch = zero;
}
} else { /* Threshold hasn't been reached,
** need the node. */
if (st_insert(info->maxpathTable, regChild,
NULL) == ST_OUT_OF_MEM) {
dd->errorCode = CUDD_MEMORY_OUT;
(void) fprintf(dd->err, "OUT of memory\n");
info->thresholdReached = 0;
childBranch = zero;
} else {
info->thresholdReached--;
if (info->thresholdReached <= 0) {
info->findShortestPath = 1;
}
childBranch = BuildSubsetBdd(dd, gInfo, pathTable,
child, info, subsetNodeTable);
} /* end of st_insert successful */
} /* end of threshold hasnt been reached yet */
} /* end of else node not found in maxpath table */
} /* end of if (path length of node = maxpath) */
} /* end if !(childPathLength > maxpath) */
if (childBranch == NULL) {
/* deref other stuff incase reordering has taken place */
if (ThenBranch != NULL) {
Cudd_RecursiveDeref(dd, ThenBranch);
ThenBranch = NULL;
}
if (ElseBranch != NULL) {
Cudd_RecursiveDeref(dd, ElseBranch);
ElseBranch = NULL;
}
return(NULL);
}
cuddRef(childBranch);
if (child == Nv) {
ThenBranch = childBranch;
} else {
ElseBranch = childBranch;
}
processingDone++;
} /*end of while processing Nv, Nnv */
info->findShortestPath = 0;
topid = Cudd_NodeReadIndex(N);
topv = Cudd_ReadVars(dd, topid);
cuddRef(topv);
neW = cuddBddIteRecur(dd, topv, ThenBranch, ElseBranch);
if (neW != NULL) {
cuddRef(neW);
}
Cudd_RecursiveDeref(dd, topv);
Cudd_RecursiveDeref(dd, ThenBranch);
Cudd_RecursiveDeref(dd, ElseBranch);
if (neW == NULL) {
return(NULL);
} else {
/* Hard Limit of threshold has been imposed */
if (subsetNodeTable != NIL(st_table)) {
/* check if a new node is created */
regNew = Cudd_Regular(neW);
/* subset node table keeps all new nodes that have been created to
* keep a running count of how many nodes have been built in the
* subset.
*/
if (!st_lookup(subsetNodeTable, regNew, (void **) &entry)) {
if (!Cudd_IsConstantInt(regNew)) {
if (st_insert(subsetNodeTable, regNew,
NULL) == ST_OUT_OF_MEM) {
(void) fprintf(dd->err, "Out of memory\n");
return (NULL);
}
if (st_count(subsetNodeTable) > info->threshold) {
info->thresholdReached = 0;
}
}
}
}
/*store computed result in regular form*/
if (Cudd_IsComplement(node)) {
nodeStat->compResult = neW;
cuddRef(nodeStat->compResult);
/* if the new node is the same as the corresponding node in the
* original bdd then its complement need not be computed as it
* cannot be larger than the node itself
*/
if (neW == node) {
#ifdef DD_DEBUG
gInfo->thishit++;
#endif
/* if a result for the node has already been computed, then
* it can only be smaller than teh node itself. hence store
* the node result in order not to break recombination
*/
if (nodeStat->regResult != NULL) {
Cudd_RecursiveDeref(dd, nodeStat->regResult);
}
nodeStat->regResult = Cudd_Not(neW);
cuddRef(nodeStat->regResult);
}
} else {
nodeStat->regResult = neW;
cuddRef(nodeStat->regResult);
if (neW == node) {
#ifdef DD_DEBUG
gInfo->thishit++;
#endif
if (nodeStat->compResult != NULL) {
Cudd_RecursiveDeref(dd, nodeStat->compResult);
}
nodeStat->compResult = Cudd_Not(neW);
cuddRef(nodeStat->compResult);
}
}
cuddDeref(neW);
return(neW);
} /* end of else i.e. Subset != NULL */
} /* end of BuildSubsetBdd */
/**
@brief Procedure to free the result dds stored in the NodeDist pages.
@sideeffect None
*/
static enum st_retval
stPathTableDdFree(
void * key,
void * value,
void * arg)
{
NodeDist_t *nodeStat = (NodeDist_t *) value;
DdManager *dd = (DdManager *) arg;
(void) key; /* avoid warning */
if (nodeStat->regResult != NULL) {
Cudd_RecursiveDeref(dd, nodeStat->regResult);
}
if (nodeStat->compResult != NULL) {
Cudd_RecursiveDeref(dd, nodeStat->compResult);
}
return(ST_CONTINUE);
} /* end of stPathTableFree */