The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

328 lines
8.8 KiB

/**
* N-queens example.
* Based on work by Robert Meolic, released by him into the public domain.
*/
#include <argp.h>
#include <inttypes.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#ifdef HAVE_PROFILER
#include <gperftools/profiler.h>
#endif
#include <sylvan.h>
#include <sylvan_table.h>
/* Configuration */
static int report_minterms = 0; // report minterms at every major step
static int report_minor = 0; // report minor steps
static int report_stats = 0; // report stats at end
static int workers = 0; // autodetect number of workers by default
static size_t size = 0; // will be set by caller
#ifdef HAVE_PROFILER
static char* profile_filename = NULL; // filename for profiling
#endif
/* argp configuration */
static struct argp_option options[] =
{
{"workers", 'w', "<workers>", 0, "Number of workers (default=0: autodetect)", 0},
#ifdef HAVE_PROFILER
{"profiler", 'p', "<filename>", 0, "Filename for profiling", 0},
#endif
{"report-minterms", 1, 0, 0, "Report #minterms at every major step", 1},
{"report-minor", 2, 0, 0, "Report minor steps", 1},
{"report-stats", 3, 0, 0, "Report statistics at end", 1},
{0, 0, 0, 0, 0, 0}
};
static error_t
parse_opt(int key, char *arg, struct argp_state *state)
{
switch (key) {
case 'w':
workers = atoi(arg);
break;
case 1:
report_minterms = 1;
break;
case 2:
report_minor = 1;
break;
case 3:
report_stats = 1;
break;
#ifdef HAVE_PROFILER
case 'p':
profile_filename = arg;
break;
#endif
case ARGP_KEY_ARG:
if (state->arg_num >= 1) argp_usage(state);
size = atoi(arg);
break;
case ARGP_KEY_END:
if (state->arg_num < 1) argp_usage(state);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static struct argp argp = { options, parse_opt, "<size>", 0, 0, 0, 0 };
/* Obtain current wallclock time */
static double
wctime()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (tv.tv_sec + 1E-6 * tv.tv_usec);
}
static double t_start;
#define INFO(s, ...) fprintf(stdout, "[% 8.2f] " s, wctime()-t_start, ##__VA_ARGS__)
#define Abort(...) { fprintf(stderr, __VA_ARGS__); exit(-1); }
VOID_TASK_0(gc_start)
{
if (report_minor) {
printf("\n");
}
INFO("(GC) Starting garbage collection...\n");
}
VOID_TASK_0(gc_end)
{
INFO("(GC) Garbage collection done.\n");
}
int
main(int argc, char** argv)
{
argp_parse(&argp, argc, argv, 0, 0, 0);
setlocale(LC_NUMERIC, "en_US.utf-8");
t_start = wctime();
// Init Lace
lace_init(workers, 1000000); // auto-detect number of workers, use a 1,000,000 size task queue
lace_startup(0, NULL, NULL); // auto-detect program stack, do not use a callback for startup
// Lace is initialized, now set local variables
LACE_ME;
// Init Sylvan
// Nodes table size of 1LL<<20 is 1048576 entries
// Cache size of 1LL<<18 is 262144 entries
// Nodes table size: 24 bytes * nodes
// Cache table size: 36 bytes * cache entries
// With 2^20 nodes and 2^18 cache entries, that's 33 MB
// With 2^24 nodes and 2^22 cache entries, that's 528 MB
sylvan_set_sizes(1LL<<20, 1LL<<24, 1LL<<18, 1LL<<22);
sylvan_init_package();
sylvan_set_granularity(3); // granularity 3 is decent value for this small problem - 1 means "use cache for every operation"
sylvan_init_bdd();
// Before and after garbage collection, call gc_start and gc_end
sylvan_gc_hook_pregc(TASK(gc_start));
sylvan_gc_hook_postgc(TASK(gc_end));
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStart(profile_filename);
#endif
double t1 = wctime();
BDD zero = sylvan_false;
BDD one = sylvan_true;
// Variables 0 ... (SIZE*SIZE-1)
BDD board[size*size];
for (size_t i=0; i<size*size; i++) {
board[i] = sylvan_ithvar(i);
sylvan_protect(board+i);
}
BDD res = one, temp = one;
// we use sylvan's "protect" marking mechanism...
// that means we hardly need to do manual ref/deref when the variables change
sylvan_protect(&res);
sylvan_protect(&temp);
// Old satcount function still requires a silly variables cube
BDD vars = one;
sylvan_protect(&vars);
for (size_t i=0; i<size*size; i++) vars = sylvan_and(vars, board[i]);
INFO("Initialisation complete!\n");
if (report_minor) {
INFO("Encoding rows... ");
} else {
INFO("Encoding rows...\n");
}
for (size_t i=0; i<size; i++) {
if (report_minor) {
printf("%zu... ", i);
fflush(stdout);
}
for (size_t j=0; j<size; j++) {
// compute "\BigAnd (!board[i][k]) \or !board[i][j]" with k != j
temp = one;
for (size_t k=0; k<size; k++) {
if (j==k) continue;
temp = sylvan_and(temp, sylvan_not(board[i*size+k]));
}
temp = sylvan_or(temp, sylvan_not(board[i*size+j]));
// add cube to "res"
res = sylvan_and(res, temp);
}
}
if (report_minor) {
printf("\n");
}
if (report_minterms) {
INFO("We have %.0f minterms\n", sylvan_satcount(res, vars));
}
if (report_minor) {
INFO("Encoding columns... ");
} else {
INFO("Encoding columns...\n");
}
for (size_t j=0; j<size; j++) {
if (report_minor) {
printf("%zu... ", j);
fflush(stdout);
}
for (size_t i=0; i<size; i++) {
// compute "\BigAnd (!board[k][j]) \or !board[i][j]" with k != i
temp = one;
for (size_t k=0; k<size; k++) {
if (i==k) continue;
temp = sylvan_and(temp, sylvan_not(board[k*size+j]));
}
temp = sylvan_or(temp, sylvan_not(board[i*size+j]));
// add cube to "res"
res = sylvan_and(res, temp);
}
}
if (report_minor) {
printf("\n");
}
if (report_minterms) {
INFO("We have %.0f minterms\n", sylvan_satcount(res, vars));
}
if (report_minor) {
INFO("Encoding rising diagonals... ");
} else {
INFO("Encoding rising diagonals...\n");
}
for (size_t i=0; i<size; i++) {
if (report_minor) {
printf("%zu... ", i);
fflush(stdout);
}
for (size_t j=0; j<size; j++) {
temp = one;
for (size_t k=0; k<size; k++) {
// if (j+k-i >= 0 && j+k-i < size && k != i)
if (j+k >= i && j+k < size+i && k != i) {
temp = sylvan_and(temp, sylvan_not(board[k*size + (j+k-i)]));
}
}
temp = sylvan_or(temp, sylvan_not(board[i*size+j]));
// add cube to "res"
res = sylvan_and(res, temp);
}
}
if (report_minor) {
printf("\n");
}
if (report_minterms) {
INFO("We have %.0f minterms\n", sylvan_satcount(res, vars));
}
if (report_minor) {
INFO("Encoding falling diagonals... ");
} else {
INFO("Encoding falling diagonals...\n");
}
for (size_t i=0; i<size; i++) {
if (report_minor) {
printf("%zu... ", i);
fflush(stdout);
}
for (size_t j=0; j<size; j++) {
temp = one;
for (size_t k=0; k<size; k++) {
// if (j+i-k >= 0 && j+i-k < size && k != i)
if (j+i >= k && j+i < size+k && k != i) {
temp = sylvan_and(temp, sylvan_not(board[k*size + (j+i-k)]));
}
}
temp = sylvan_or(temp, sylvan_not(board[i*size + j]));
// add cube to "res"
res = sylvan_and(res, temp);
}
}
if (report_minor) {
printf("\n");
}
if (report_minterms) {
INFO("We have %.0f minterms\n", sylvan_satcount(res, vars));
}
if (report_minor) {
INFO("Final computation to place a queen on every row... ");
} else {
INFO("Final computation to place a queen on every row...\n");
}
for (size_t i=0; i<size; i++) {
if (report_minor) {
printf("%zu... ", i);
fflush(stdout);
}
temp = zero;
for (size_t j=0; j<size; j++) {
temp = sylvan_or(temp, board[i*size+j]);
}
res = sylvan_and(res, temp);
}
if (report_minor) {
printf("\n");
}
double t2 = wctime();
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStop();
#endif
INFO("Result: NQueens(%zu) has %.0f solutions.\n", size, sylvan_satcount(res, vars));
INFO("Result BDD has %zu nodes.\n", sylvan_nodecount(res));
INFO("Computation time: %f sec.\n", t2-t1);
if (report_stats) {
sylvan_stats_report(stdout);
}
sylvan_quit();
lace_exit();
}