The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

170 lines
5.4 KiB

// firewire protocol with integer semantics
// dxp/gxn 14/06/01
// CLOCKS
// x1 (x2) clock for node1 (node2)
// y1 and y2 (z1 and z2) clocks for wire12 (wire21)
mdp
// maximum and minimum delays
// fast
const int rc_fast_max = 85;
const int rc_fast_min = 76;
// slow
const int rc_slow_max = 167;
const int rc_slow_min = 159;
// delay caused by the wire length
const int delay;
// probability of choosing fast
const double fast;
const double slow=1-fast;
module wire12
// local state
w12 : [0..9];
// 0 - empty
// 1 - rec_req
// 2 - rec_req_ack
// 3 - rec_ack
// 4 - rec_ack_idle
// 5 - rec_idle
// 6 - rec_idle_req
// 7 - rec_ack_req
// 8 - rec_req_idle
// 9 - rec_idle_ack
// clock for wire12
y1 : [0..delay+1];
y2 : [0..delay+1];
// empty
// do not need y1 and y2 to increase as always reset when this state is left
// similarly can reset y1 and y2 when we re-enter this state
[snd_req12] w12=0 -> (w12'=1) & (y1'=0) & (y2'=0);
[snd_ack12] w12=0 -> (w12'=3) & (y1'=0) & (y2'=0);
[snd_idle12] w12=0 -> (w12'=5) & (y1'=0) & (y2'=0);
[time] w12=0 -> (w12'=w12);
// rec_req
[snd_req12] w12=1 -> (w12'=1);
[rec_req12] w12=1 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_ack12] w12=1 -> (w12'=2) & (y2'=0);
[snd_idle12] w12=1 -> (w12'=8) & (y2'=0);
[time] w12=1 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_req_ack
[snd_ack12] w12=2 -> (w12'=2);
[rec_req12] w12=2 -> (w12'=3);
[time] w12=2 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack
[snd_ack12] w12=3 -> (w12'=3);
[rec_ack12] w12=3 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_idle12] w12=3 -> (w12'=4) & (y2'=0);
[snd_req12] w12=3 -> (w12'=7) & (y2'=0);
[time] w12=3 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack_idle
[snd_idle12] w12=4 -> (w12'=4);
[rec_ack12] w12=4 -> (w12'=5);
[time] w12=4 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle
[snd_idle12] w12=5 -> (w12'=5);
[rec_idle12] w12=5 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_req12] w12=5 -> (w12'=6) & (y2'=0);
[snd_ack12] w12=5 -> (w12'=9) & (y2'=0);
[time] w12=5 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle_req
[snd_req12] w12=6 -> (w12'=6);
[rec_idle12] w12=6 -> (w12'=1);
[time] w12=6 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack_req
[snd_req12] w12=7 -> (w12'=7);
[rec_ack12] w12=7 -> (w12'=1);
[time] w12=7 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_req_idle
[snd_idle12] w12=8 -> (w12'=8);
[rec_req12] w12=8 -> (w12'=5);
[time] w12=8 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle_ack
[snd_ack12] w12=9 -> (w12'=9);
[rec_idle12] w12=9 -> (w12'=3);
[time] w12=9 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
endmodule
module node1
// clock for node1
x1 : [0..168];
// local state
s1 : [0..8];
// 0 - root contention
// 1 - rec_idle
// 2 - rec_req_fast
// 3 - rec_req_slow
// 4 - rec_idle_fast
// 5 - rec_idle_slow
// 6 - snd_req
// 7- almost_root
// 8 - almost_child
// added resets to x1 when not considered again until after rest
// removed root and child (using almost root and almost child)
// root contention immediate state)
[snd_idle12] s1=0 -> fast : (s1'=2) & (x1'=0) + slow : (s1'=3) & (x1'=0);
[rec_idle21] s1=0 -> (s1'=1);
// rec_idle immediate state)
[snd_idle12] s1=1 -> fast : (s1'=4) & (x1'=0) + slow : (s1'=5) & (x1'=0);
[rec_req21] s1=1 -> (s1'=0);
// rec_req_fast
[rec_idle21] s1=2 -> (s1'=4);
[snd_ack12] s1=2 & x1>=rc_fast_min -> (s1'=7) & (x1'=0);
[time] s1=2 & x1<rc_fast_max -> (x1'=min(x1+1,168));
// rec_req_slow
[rec_idle21] s1=3 -> (s1'=5);
[snd_ack12] s1=3 & x1>=rc_slow_min -> (s1'=7) & (x1'=0);
[time] s1=3 & x1<rc_slow_max -> (x1'=min(x1+1,168));
// rec_idle_fast
[rec_req21] s1=4 -> (s1'=2);
[snd_req12] s1=4 & x1>=rc_fast_min -> (s1'=6) & (x1'=0);
[time] s1=4 & x1<rc_fast_max -> (x1'=min(x1+1,168));
// rec_idle_slow
[rec_req21] s1=5 -> (s1'=3);
[snd_req12] s1=5 & x1>=rc_slow_min -> (s1'=6) & (x1'=0);
[time] s1=5 & x1<rc_slow_max -> (x1'=min(x1+1,168));
// snd_req
// do not use x1 until reset (in state 0 or in state 1) so do not need to increase x1
// also can set x1 to 0 upon entering this state
[rec_req21] s1=6 -> (s1'=0);
[rec_ack21] s1=6 -> (s1'=8);
[time] s1=6 -> (s1'=s1);
// almost root (immediate)
// loop in final states to remove deadlock
[] s1=7 & s2=8 -> (s1'=s1);
[] s1=8 & s2=7 -> (s1'=s1);
[time] s1=7 -> (s1'=s1);
[time] s1=8 -> (s1'=s1);
endmodule
// construct remaining automata through renaming
module wire21=wire12[w12=w21, y1=z1, y2=z2,
snd_req12=snd_req21, snd_idle12=snd_idle21, snd_ack12=snd_ack21,
rec_req12=rec_req21, rec_idle12=rec_idle21, rec_ack12=rec_ack21]
endmodule
module node2=node1[s1=s2, s2=s1, x1=x2,
rec_req21=rec_req12, rec_idle21=rec_idle12, rec_ack21=rec_ack12,
snd_req12=snd_req21, snd_idle12=snd_idle21, snd_ack12=snd_ack21]
endmodule
// reward structures
// time
rewards "time"
[time] true : 1;
endrewards
// time nodes sending
rewards "time_sending"
[time] (w12>0 | w21>0) : 1;
endrewards
label "elected" = ((s1=8) & (s2=7)) | ((s1=7) & (s2=8));