/** @file @ingroup cudd @brief Functions that manipulate the reference counts. @author Fabio Somenzi @copyright@parblock Copyright (c) 1995-2015, Regents of the University of Colorado All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @endparblock */ #include "util.h" #include "cuddInt.h" /*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Stucture declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/ /** \cond */ /*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/ /** \endcond */ /*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/ /** @brief Increases the reference count of a node, if it is not saturated. @sideeffect None @see Cudd_RecursiveDeref Cudd_Deref */ void Cudd_Ref( DdNode * n) { n = Cudd_Regular(n); cuddSatInc(n->ref); } /* end of Cudd_Ref */ /** @brief Decreases the reference count of node n. @details If n dies, recursively decreases the reference counts of its children. It is used to dispose of a DD that is no longer needed. @sideeffect None @see Cudd_Deref Cudd_Ref Cudd_RecursiveDerefZdd */ void Cudd_RecursiveDeref( DdManager * table, DdNode * n) { DdNode *N; int ord; DdNodePtr *stack = table->stack; int SP = 1; unsigned int live = table->keys - table->dead; if (live > table->peakLiveNodes) { table->peakLiveNodes = live; } N = Cudd_Regular(n); do { #ifdef DD_DEBUG assert(N->ref != 0); #endif if (N->ref == 1) { N->ref = 0; table->dead++; #ifdef DD_STATS table->nodesDropped++; #endif if (cuddIsConstant(N)) { table->constants.dead++; N = stack[--SP]; } else { ord = table->perm[N->index]; stack[SP++] = Cudd_Regular(cuddE(N)); table->subtables[ord].dead++; N = cuddT(N); } } else { cuddSatDec(N->ref); N = stack[--SP]; } } while (SP != 0); } /* end of Cudd_RecursiveDeref */ /** @brief Decreases the reference count of %BDD node n. @details If n dies, recursively decreases the reference counts of its children. It is used to dispose of a %BDD that is no longer needed. It is more efficient than Cudd_RecursiveDeref, but it cannot be used on ADDs. The greater efficiency comes from being able to assume that no constant node will ever die as a result of a call to this procedure. @sideeffect None @see Cudd_RecursiveDeref Cudd_DelayedDerefBdd */ void Cudd_IterDerefBdd( DdManager * table, DdNode * n) { DdNode *N; int ord; DdNodePtr *stack = table->stack; int SP = 1; unsigned int live = table->keys - table->dead; if (live > table->peakLiveNodes) { table->peakLiveNodes = live; } N = Cudd_Regular(n); do { #ifdef DD_DEBUG assert(N->ref != 0); #endif if (N->ref == 1) { N->ref = 0; table->dead++; #ifdef DD_STATS table->nodesDropped++; #endif ord = table->perm[N->index]; stack[SP++] = Cudd_Regular(cuddE(N)); table->subtables[ord].dead++; N = cuddT(N); } else { cuddSatDec(N->ref); N = stack[--SP]; } } while (SP != 0); } /* end of Cudd_IterDerefBdd */ /** @brief Decreases the reference count of %BDD node n. @details Enqueues node n for later dereferencing. If the queue is full decreases the reference count of the oldest node N to make room for n. If N dies, recursively decreases the reference counts of its children. It is used to dispose of a %BDD that is currently not needed, but may be useful again in the near future. The dereferencing proper is done as in Cudd_IterDerefBdd. @sideeffect None @see Cudd_RecursiveDeref Cudd_IterDerefBdd */ void Cudd_DelayedDerefBdd( DdManager * table, DdNode * n) { DdNode *N; int ord; DdNodePtr *stack; int SP; unsigned int live = table->keys - table->dead; if (live > table->peakLiveNodes) { table->peakLiveNodes = live; } n = Cudd_Regular(n); #ifdef DD_DEBUG assert(n->ref != 0); #endif #ifdef DD_NO_DEATH_ROW N = n; #else if (cuddIsConstant(n) || n->ref > 1) { #ifdef DD_DEBUG assert(n->ref != 1 && (!cuddIsConstant(n) || n == DD_ONE(table))); #endif cuddSatDec(n->ref); return; } N = table->deathRow[table->nextDead]; if (N != NULL) { #endif #ifdef DD_DEBUG assert(!Cudd_IsComplement(N)); #endif stack = table->stack; SP = 1; do { #ifdef DD_DEBUG assert(N->ref != 0); #endif if (N->ref == 1) { N->ref = 0; table->dead++; #ifdef DD_STATS table->nodesDropped++; #endif ord = table->perm[N->index]; stack[SP++] = Cudd_Regular(cuddE(N)); table->subtables[ord].dead++; N = cuddT(N); } else { cuddSatDec(N->ref); N = stack[--SP]; } } while (SP != 0); #ifndef DD_NO_DEATH_ROW } table->deathRow[table->nextDead] = n; /* Udate insertion point. */ table->nextDead++; table->nextDead &= table->deadMask; #if 0 if (table->nextDead == table->deathRowDepth) { if (table->deathRowDepth < table->looseUpTo / 2) { extern void (*MMoutOfMemory)(size_t); void (*saveHandler)(size_t) = MMoutOfMemory; DdNodePtr *newRow; MMoutOfMemory = table->outOfMemCallback; newRow = REALLOC(DdNodePtr,table->deathRow,2*table->deathRowDepth); MMoutOfMemory = saveHandler; if (newRow == NULL) { table->nextDead = 0; } else { int i; table->memused += table->deathRowDepth; i = table->deathRowDepth; table->deathRowDepth <<= 1; for (; i < table->deathRowDepth; i++) { newRow[i] = NULL; } table->deadMask = table->deathRowDepth - 1; table->deathRow = newRow; } } else { table->nextDead = 0; } } #endif #endif } /* end of Cudd_DelayedDerefBdd */ /** @brief Decreases the reference count of %ZDD node n. @details If n dies, recursively decreases the reference counts of its children. It is used to dispose of a %ZDD that is no longer needed. @sideeffect None @see Cudd_Deref Cudd_Ref Cudd_RecursiveDeref */ void Cudd_RecursiveDerefZdd( DdManager * table, DdNode * n) { DdNode *N; int ord; DdNodePtr *stack = table->stack; int SP = 1; N = n; do { #ifdef DD_DEBUG assert(N->ref != 0); #endif cuddSatDec(N->ref); if (N->ref == 0) { table->deadZ++; #ifdef DD_STATS table->nodesDropped++; #endif #ifdef DD_DEBUG assert(!cuddIsConstant(N)); #endif ord = table->permZ[N->index]; stack[SP++] = cuddE(N); table->subtableZ[ord].dead++; N = cuddT(N); } else { N = stack[--SP]; } } while (SP != 0); } /* end of Cudd_RecursiveDerefZdd */ /** @brief Decreases the reference count of node. @details It is primarily used in recursive procedures to decrease the ref count of a result node before returning it. This accomplishes the goal of removing the protection applied by a previous Cudd_Ref. @sideeffect None @see Cudd_RecursiveDeref Cudd_RecursiveDerefZdd Cudd_Ref */ void Cudd_Deref( DdNode * node) { node = Cudd_Regular(node); cuddSatDec(node->ref); } /* end of Cudd_Deref */ /** @brief Checks the unique table for nodes with non-zero reference counts. @details It is normally called before Cudd_Quit to make sure that there are no memory leaks due to missing Cudd_RecursiveDeref's. Takes into account that reference counts may saturate and that the basic constants and the projection functions are referenced by the manager. @return the number of nodes with non-zero reference count. (Except for the cases mentioned above.) @sideeffect None */ int Cudd_CheckZeroRef( DdManager * manager) { int size; int i, j; int remain; /* the expected number of remaining references to one */ DdNodePtr *nodelist; DdNode *node; DdNode *sentinel = &(manager->sentinel); DdSubtable *subtable; int count = 0; int index; #ifndef DD_NO_DEATH_ROW cuddClearDeathRow(manager); #endif /* First look at the BDD/ADD subtables. */ remain = 1; /* reference from the manager */ size = manager->size; remain += 2 * size; /* reference from the BDD projection functions */ for (i = 0; i < size; i++) { subtable = &(manager->subtables[i]); nodelist = subtable->nodelist; for (j = 0; (unsigned) j < subtable->slots; j++) { node = nodelist[j]; while (node != sentinel) { if (node->ref != 0 && node->ref != DD_MAXREF) { index = (int) node->index; if (node != manager->vars[index]) { count++; } else { if (node->ref != 1) { count++; } } } node = node->next; } } } /* Then look at the ZDD subtables. */ size = manager->sizeZ; if (size) /* references from ZDD universe */ remain += 2; for (i = 0; i < size; i++) { subtable = &(manager->subtableZ[i]); nodelist = subtable->nodelist; for (j = 0; (unsigned) j < subtable->slots; j++) { node = nodelist[j]; while (node != NULL) { if (node->ref != 0 && node->ref != DD_MAXREF) { index = (int) node->index; if (node == manager->univ[manager->permZ[index]]) { if (node->ref > 2) { count++; } } else { count++; } } node = node->next; } } } /* Now examine the constant table. Plusinfinity, minusinfinity, and ** zero are referenced by the manager. One is referenced by the ** manager, by the ZDD universe, and by all projection functions. ** All other nodes should have no references. */ nodelist = manager->constants.nodelist; for (j = 0; (unsigned) j < manager->constants.slots; j++) { node = nodelist[j]; while (node != NULL) { if (node->ref != 0 && node->ref != DD_MAXREF) { if (node == manager->one) { if ((int) node->ref != remain) { count++; } } else if (node == manager->zero || node == manager->plusinfinity || node == manager->minusinfinity) { if (node->ref != 1) { count++; } } else { count++; } } node = node->next; } } return(count); } /* end of Cudd_CheckZeroRef */ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /** @brief Brings children of a dead node back. @sideeffect None @see cuddReclaimZdd */ void cuddReclaim( DdManager * table, DdNode * n) { DdNode *N; int ord; DdNodePtr *stack = table->stack; int SP = 1; double initialDead = table->dead; N = Cudd_Regular(n); #ifdef DD_DEBUG assert(N->ref == 0); #endif do { if (N->ref == 0) { N->ref = 1; table->dead--; if (cuddIsConstant(N)) { table->constants.dead--; N = stack[--SP]; } else { ord = table->perm[N->index]; stack[SP++] = Cudd_Regular(cuddE(N)); table->subtables[ord].dead--; N = cuddT(N); } } else { cuddSatInc(N->ref); N = stack[--SP]; } } while (SP != 0); N = Cudd_Regular(n); cuddSatDec(N->ref); table->reclaimed += initialDead - table->dead; } /* end of cuddReclaim */ /** @brief Brings children of a dead %ZDD node back. @sideeffect None @see cuddReclaim */ void cuddReclaimZdd( DdManager * table, DdNode * n) { DdNode *N; int ord; DdNodePtr *stack = table->stack; int SP = 1; N = n; #ifdef DD_DEBUG assert(N->ref == 0); #endif do { cuddSatInc(N->ref); if (N->ref == 1) { table->deadZ--; table->reclaimed++; #ifdef DD_DEBUG assert(!cuddIsConstant(N)); #endif ord = table->permZ[N->index]; stack[SP++] = cuddE(N); table->subtableZ[ord].dead--; N = cuddT(N); } else { N = stack[--SP]; } } while (SP != 0); cuddSatDec(n->ref); } /* end of cuddReclaimZdd */ /** @brief Shrinks the death row. @details Shrinks the death row by a factor of four. @sideeffect None @see cuddClearDeathRow */ void cuddShrinkDeathRow( DdManager *table) { #ifndef DD_NO_DEATH_ROW int i; if (table->deathRowDepth > 3) { for (i = table->deathRowDepth/4; i < table->deathRowDepth; i++) { if (table->deathRow[i] == NULL) break; Cudd_IterDerefBdd(table,table->deathRow[i]); table->deathRow[i] = NULL; } table->deathRowDepth /= 4; table->deadMask = table->deathRowDepth - 1; if ((unsigned) table->nextDead > table->deadMask) { table->nextDead = 0; } table->deathRow = REALLOC(DdNodePtr, table->deathRow, table->deathRowDepth); } #endif } /* end of cuddShrinkDeathRow */ /** @brief Clears the death row. @sideeffect None @see Cudd_DelayedDerefBdd Cudd_IterDerefBdd Cudd_CheckZeroRef cuddGarbageCollect */ void cuddClearDeathRow( DdManager *table) { #ifndef DD_NO_DEATH_ROW int i; for (i = 0; i < table->deathRowDepth; i++) { if (table->deathRow[i] == NULL) break; Cudd_IterDerefBdd(table,table->deathRow[i]); table->deathRow[i] = NULL; } #ifdef DD_DEBUG for (; i < table->deathRowDepth; i++) { assert(table->deathRow[i] == NULL); } #endif table->nextDead = 0; #endif } /* end of cuddClearDeathRow */ /** @brief Checks whether a node is in the death row. @return the position of the first occurrence if the node is present; -1 otherwise. @sideeffect None @see Cudd_DelayedDerefBdd cuddClearDeathRow */ int cuddIsInDeathRow( DdManager *dd, DdNode *f) { #ifndef DD_NO_DEATH_ROW int i; for (i = 0; i < dd->deathRowDepth; i++) { if (f == dd->deathRow[i]) { return(i); } } #endif return(-1); } /* end of cuddIsInDeathRow */ /** @brief Counts how many times a node is in the death row. @sideeffect None @see Cudd_DelayedDerefBdd cuddClearDeathRow cuddIsInDeathRow */ int cuddTimesInDeathRow( DdManager *dd, DdNode *f) { int count = 0; #ifndef DD_NO_DEATH_ROW int i; for (i = 0; i < dd->deathRowDepth; i++) { count += f == dd->deathRow[i]; } #endif return(count); } /* end of cuddTimesInDeathRow */ /*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/