// Translation of the MAPA Specification of a polling system into PRISM code // http://wwwhome.cs.utwente.nl/~timmer/scoop/papers/qest13/index.html ma const int N; // number of job types (should be at most 6) const int Q; // Maximum queue size in each station // Formulae to control the LIFO queue of the stations. // The queue is represented by some integer whose base N representation has at most Q digits, each representing one of the job types 0, 1, ..., N-1. // In addition, we store the current size of the queue which is needed to distinguish an empty queue from a queue holding job of type 0 formula queue1_empty = q1Size=0; formula queue1_full = q1Size=Q; formula queue1_pop = floor(q1/N); formula queue1_head = q1 - (queue1_pop * N); // i.e. q1 modulo N formula queue1_push = q1*N; formula queue2_empty = q2Size=0; formula queue2_full = q2Size=Q; formula queue2_pop = floor(q2/N); formula queue2_head = q2 - (queue2_pop * N); // i.e. q2 modulo N formula queue2_push = q2*N; const int queue_maxValue = (N^Q)-1; const double inRate1 = 3; // = (2 * #station) + 1; const double inRate2 = 5; // = (2 * #station) + 1; module pollingsys // The queues for the stations q1 : [0..queue_maxValue]; q1Size : [0..Q]; q2 : [0..queue_maxValue]; q2Size : [0..Q]; // Store the job that is currently processed by the server. j=N means that no job is processed. j : [0..N] init N; // Flag indicating whether a new job arrived newJob1 : bool init false; newJob2 : bool init false; //<> !newJob1 & !newJob2 & !queue1_full & queue2_full & j=N -> inRate1 : (newJob1'=true); //<> !newJob1 & !newJob2 & queue1_full & !queue2_full & j=N -> inRate2 : (newJob2'=true); <> !newJob1 & !newJob2 & !queue1_full & !queue2_full & j=N -> inRate1 : (newJob1'=true) + inRate2 : (newJob2'=true); <> !newJob1 & !newJob2 & queue1_full & queue2_full & j 2*(j+1) : (j'=N); <> !newJob1 & !newJob2 & !queue1_full & queue2_full & j inRate1 : (newJob1'=true) + 2*(j+1) : (j'=N); <> !newJob1 & !newJob2 & queue1_full & !queue2_full & j inRate2 : (newJob2'=true) + 2*(j+1) : (j'=N); <> !newJob1 & !newJob2 & !queue1_full & !queue2_full & j inRate1 : (newJob1'=true) + inRate2 : (newJob2'=true) + 2*(j+1) : (j'=N); [] newJob1 & N>=1 -> 1 : (q1Size'=q1Size+1) & (q1'=queue1_push+0) & (newJob1'=false); [] newJob1 & N>=2 -> 1 : (q1Size'=q1Size+1) & (q1'=queue1_push+1) & (newJob1'=false); [] newJob1 & N>=3 -> 1 : (q1Size'=q1Size+1) & (q1'=queue1_push+2) & (newJob1'=false); [] newJob1 & N>=4 -> 1 : (q1Size'=q1Size+1) & (q1'=queue1_push+3) & (newJob1'=false); [] newJob1 & N>=5 -> 1 : (q1Size'=q1Size+1) & (q1'=queue1_push+4) & (newJob1'=false); [] newJob1 & N>=6 -> 1 : (q1Size'=q1Size+1) & (q1'=queue1_push+5) & (newJob1'=false); [] newJob2 & N>=1 -> 1 : (q2Size'=q2Size+1) & (q2'=queue2_push+0) & (newJob2'=false); [] newJob2 & N>=2 -> 1 : (q2Size'=q2Size+1) & (q2'=queue2_push+1) & (newJob2'=false); [] newJob2 & N>=3 -> 1 : (q2Size'=q2Size+1) & (q2'=queue2_push+2) & (newJob2'=false); [] newJob2 & N>=4 -> 1 : (q2Size'=q2Size+1) & (q2'=queue2_push+3) & (newJob2'=false); [] newJob2 & N>=5 -> 1 : (q2Size'=q2Size+1) & (q2'=queue2_push+4) & (newJob2'=false); [] newJob2 & N>=6 -> 1 : (q2Size'=q2Size+1) & (q2'=queue2_push+5) & (newJob2'=false); [copy1] !newJob1 & !newJob2 & !queue1_empty & j=N -> 0.9 : (j'=queue1_head) & (q1Size'=q1Size-1) & (q1'=queue1_pop) + 0.1 : (j'=queue1_head); [copy2] !newJob1 & !newJob2 & !queue2_empty & j=N -> 0.9 : (j'=queue2_head) & (q2Size'=q2Size-1) & (q2'=queue2_pop) + 0.1 : (j'=queue2_head); endmodule label "q1full" = q1Size=Q; label "q2full" = q2Size=Q; label "allqueuesfull" = q1Size=Q & q2Size=Q; // Rewards adapted from Guck et al.: Modelling and Analysis of Markov Reward Automata rewards "processedjobs1" [copy1] true : 0.1; endrewards rewards "processedjobs2" [copy2] true : 0.1; endrewards rewards "processedjobs" [copy1] true : 0.1; [copy2] true : 0.1; endrewards rewards "queuesize1" true : 0.01 * (q1Size); endrewards rewards "queuesize2" true : 0.01 * (q2Size); endrewards rewards "queuesize" true : 0.01 * (q1Size + q2Size); endrewards