/** @file @ingroup cudd @brief %BDD ITE function and satellites. @author Fabio Somenzi @copyright@parblock Copyright (c) 1995-2015, Regents of the University of Colorado All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @endparblock */ #include "util.h" #include "cuddInt.h" /*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Stucture declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/ /** \cond */ /*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/ static void bddVarToConst (DdNode *f, DdNode **gp, DdNode **hp, DdNode *one); static int bddVarToCanonical (DdManager *dd, DdNode **fp, DdNode **gp, DdNode **hp, int *topfp, int *topgp, int *tophp); static int bddVarToCanonicalSimple (DdManager *dd, DdNode **fp, DdNode **gp, DdNode **hp, int *topfp, int *topgp, int *tophp); /** \endcond */ /*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/ /** @brief Implements ITE(f,g,h). @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up. @sideeffect None @see Cudd_addIte Cudd_bddIteConstant Cudd_bddIntersect */ DdNode * Cudd_bddIte( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */, DdNode * h /**< third operand */) { DdNode *res; do { dd->reordered = 0; res = cuddBddIteRecur(dd,f,g,h); } while (dd->reordered == 1); if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddIte */ /** @brief Implements ITE(f,g,h) unless too many nodes are required. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up or more new nodes than `limit` are required. @sideeffect None @see Cudd_bddIte */ DdNode * Cudd_bddIteLimit( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */, DdNode * h /**< third operand */, unsigned int limit /**< maximum number of new nodes */) { DdNode *res; unsigned int saveLimit = dd->maxLive; dd->maxLive = (dd->keys - dd->dead) + (dd->keysZ - dd->deadZ) + limit; do { dd->reordered = 0; res = cuddBddIteRecur(dd,f,g,h); } while (dd->reordered == 1); dd->maxLive = saveLimit; if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddIteLimit */ /** @brief Implements ITEconstant(f,g,h). @return a pointer to the resulting %BDD (which may or may not be constant) or DD_NON_CONSTANT. @details No new nodes are created. @sideeffect None @see Cudd_bddIte Cudd_bddIntersect Cudd_bddLeq Cudd_addIteConstant */ DdNode * Cudd_bddIteConstant( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */, DdNode * h /**< thord operand */) { DdNode *r, *Fv, *Fnv, *Gv, *Gnv, *H, *Hv, *Hnv, *t, *e; DdNode *one = DD_ONE(dd); DdNode *zero = Cudd_Not(one); int comple; int topf, topg, toph, v; statLine(dd); /* Trivial cases. */ if (f == one) /* ITE(1,G,H) => G */ return(g); if (f == zero) /* ITE(0,G,H) => H */ return(h); /* f now not a constant. */ bddVarToConst(f, &g, &h, one); /* possibly convert g or h */ /* to constants */ if (g == h) /* ITE(F,G,G) => G */ return(g); if (Cudd_IsConstantInt(g) && Cudd_IsConstantInt(h)) return(DD_NON_CONSTANT); /* ITE(F,1,0) or ITE(F,0,1) */ /* => DD_NON_CONSTANT */ if (g == Cudd_Not(h)) return(DD_NON_CONSTANT); /* ITE(F,G,G') => DD_NON_CONSTANT */ /* if F != G and F != G' */ comple = bddVarToCanonical(dd, &f, &g, &h, &topf, &topg, &toph); /* Cache lookup. */ r = cuddConstantLookup(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h); if (r != NULL) { return(Cudd_NotCond(r,comple && r != DD_NON_CONSTANT)); } v = ddMin(topg, toph); /* ITE(F,G,H) = (v,G,H) (non constant) if F = (v,1,0), v < top(G,H). */ if (topf < v && cuddT(f) == one && cuddE(f) == zero) { return(DD_NON_CONSTANT); } /* Compute cofactors. */ if (topf <= v) { v = ddMin(topf, v); /* v = top_var(F,G,H) */ Fv = cuddT(f); Fnv = cuddE(f); } else { Fv = Fnv = f; } if (topg == v) { Gv = cuddT(g); Gnv = cuddE(g); } else { Gv = Gnv = g; } if (toph == v) { H = Cudd_Regular(h); Hv = cuddT(H); Hnv = cuddE(H); if (Cudd_IsComplement(h)) { Hv = Cudd_Not(Hv); Hnv = Cudd_Not(Hnv); } } else { Hv = Hnv = h; } /* Recursion. */ t = Cudd_bddIteConstant(dd, Fv, Gv, Hv); if (t == DD_NON_CONSTANT || !Cudd_IsConstantInt(t)) { cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, DD_NON_CONSTANT); return(DD_NON_CONSTANT); } e = Cudd_bddIteConstant(dd, Fnv, Gnv, Hnv); if (e == DD_NON_CONSTANT || !Cudd_IsConstantInt(e) || t != e) { cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, DD_NON_CONSTANT); return(DD_NON_CONSTANT); } cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, t); return(Cudd_NotCond(t,comple)); } /* end of Cudd_bddIteConstant */ /** @brief Returns a function included in the intersection of f and g. @details The function computed (if not zero) is a witness that the intersection is not empty. Cudd_bddIntersect tries to build as few new nodes as possible. If the only result of interest is whether f and g intersect, Cudd_bddLeq should be used instead. @sideeffect None @see Cudd_bddLeq Cudd_bddIteConstant */ DdNode * Cudd_bddIntersect( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */) { DdNode *res; do { dd->reordered = 0; res = cuddBddIntersectRecur(dd,f,g); } while (dd->reordered == 1); if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddIntersect */ /** @brief Computes the conjunction of two BDDs f and g. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up. @sideeffect None @see Cudd_bddIte Cudd_addApply Cudd_bddAndAbstract Cudd_bddIntersect Cudd_bddOr Cudd_bddNand Cudd_bddNor Cudd_bddXor Cudd_bddXnor */ DdNode * Cudd_bddAnd( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */) { DdNode *res; do { dd->reordered = 0; res = cuddBddAndRecur(dd,f,g); } while (dd->reordered == 1); if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddAnd */ /** @brief Computes the conjunction of two BDDs f and g unless too many nodes are required. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up or more new nodes than `limit` are required. @sideeffect None @see Cudd_bddAnd */ DdNode * Cudd_bddAndLimit( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */, unsigned int limit /**< maximum number of new nodes */) { DdNode *res; unsigned int saveLimit = dd->maxLive; dd->maxLive = (dd->keys - dd->dead) + (dd->keysZ - dd->deadZ) + limit; do { dd->reordered = 0; res = cuddBddAndRecur(dd,f,g); } while (dd->reordered == 1); dd->maxLive = saveLimit; if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddAndLimit */ /** @brief Computes the disjunction of two BDDs f and g. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up. @sideeffect None @see Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddNand Cudd_bddNor Cudd_bddXor Cudd_bddXnor */ DdNode * Cudd_bddOr( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */) { DdNode *res; do { dd->reordered = 0; res = cuddBddAndRecur(dd,Cudd_Not(f),Cudd_Not(g)); } while (dd->reordered == 1); if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } res = Cudd_NotCond(res,res != NULL); return(res); } /* end of Cudd_bddOr */ /** @brief Computes the disjunction of two BDDs f and g unless too many nodes are required. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up or more new nodes than `limit` are required. @sideeffect None @see Cudd_bddOr */ DdNode * Cudd_bddOrLimit( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */, unsigned int limit /**< maximum number of new nodes */) { DdNode *res; unsigned int saveLimit = dd->maxLive; dd->maxLive = (dd->keys - dd->dead) + (dd->keysZ - dd->deadZ) + limit; do { dd->reordered = 0; res = cuddBddAndRecur(dd,Cudd_Not(f),Cudd_Not(g)); } while (dd->reordered == 1); dd->maxLive = saveLimit; if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } res = Cudd_NotCond(res,res != NULL); return(res); } /* end of Cudd_bddOrLimit */ /** @brief Computes the NAND of two BDDs f and g. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up. @sideeffect None @see Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddOr Cudd_bddNor Cudd_bddXor Cudd_bddXnor */ DdNode * Cudd_bddNand( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /** second operand */) { DdNode *res; do { dd->reordered = 0; res = cuddBddAndRecur(dd,f,g); } while (dd->reordered == 1); if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } res = Cudd_NotCond(res,res != NULL); return(res); } /* end of Cudd_bddNand */ /** @brief Computes the NOR of two BDDs f and g. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up. @sideeffect None @see Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddOr Cudd_bddNand Cudd_bddXor Cudd_bddXnor */ DdNode * Cudd_bddNor( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */) { DdNode *res; do { dd->reordered = 0; res = cuddBddAndRecur(dd,Cudd_Not(f),Cudd_Not(g)); } while (dd->reordered == 1); if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddNor */ /** @brief Computes the exclusive OR of two BDDs f and g. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up. @sideeffect None @see Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddOr Cudd_bddNand Cudd_bddNor Cudd_bddXnor */ DdNode * Cudd_bddXor( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */) { DdNode *res; do { dd->reordered = 0; res = cuddBddXorRecur(dd,f,g); } while (dd->reordered == 1); if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddXor */ /** @brief Computes the exclusive NOR of two BDDs f and g. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up. @sideeffect None @see Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddOr Cudd_bddNand Cudd_bddNor Cudd_bddXor */ DdNode * Cudd_bddXnor( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */) { DdNode *res; do { dd->reordered = 0; res = cuddBddXorRecur(dd,f,Cudd_Not(g)); } while (dd->reordered == 1); if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddXnor */ /** @brief Computes the exclusive NOR of two BDDs f and g unless too many nodes are required. @return a pointer to the resulting %BDD if successful; NULL if the intermediate result blows up or more new nodes than `limit` are required. @sideeffect None @see Cudd_bddXnor */ DdNode * Cudd_bddXnorLimit( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */, unsigned int limit /**< maximum number of new nodes */) { DdNode *res; unsigned int saveLimit = dd->maxLive; dd->maxLive = (dd->keys - dd->dead) + (dd->keysZ - dd->deadZ) + limit; do { dd->reordered = 0; res = cuddBddXorRecur(dd,f,Cudd_Not(g)); } while (dd->reordered == 1); dd->maxLive = saveLimit; if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { dd->timeoutHandler(dd, dd->tohArg); } return(res); } /* end of Cudd_bddXnorLimit */ /** @brief Checks whether f is less than or equal to g. @return 1 if f is less than or equal to g; 0 otherwise. @details No new nodes are created. @sideeffect None @see Cudd_bddIteConstant Cudd_addEvalConst */ int Cudd_bddLeq( DdManager * dd /**< manager */, DdNode * f /**< first operand */, DdNode * g /**< second operand */) { DdNode *one, *zero, *tmp, *F, *fv, *fvn, *gv, *gvn; int topf, topg, res; statLine(dd); /* Terminal cases and normalization. */ if (f == g) return(1); if (Cudd_IsComplement(g)) { /* Special case: if f is regular and g is complemented, ** f(1,...,1) = 1 > 0 = g(1,...,1). */ if (!Cudd_IsComplement(f)) return(0); /* Both are complemented: Swap and complement because ** f <= g <=> g' <= f' and we want the second argument to be regular. */ tmp = g; g = Cudd_Not(f); f = Cudd_Not(tmp); } else if (Cudd_IsComplement(f) && g < f) { tmp = g; g = Cudd_Not(f); f = Cudd_Not(tmp); } /* Now g is regular. */ one = DD_ONE(dd); if (g == one) return(1); /* no need to test against zero */ if (f == one) return(0); /* since at this point g != one */ if (Cudd_Not(f) == g) return(0); /* because neither is constant */ zero = Cudd_Not(one); if (f == zero) return(1); /* Here neither f nor g is constant. */ /* Check cache. */ F = Cudd_Regular(f); if (F->ref != 1 || g->ref != 1) { tmp = cuddCacheLookup2(dd,(DD_CTFP)Cudd_bddLeq,f,g); if (tmp != NULL) { return(tmp == one); } } /* Compute cofactors. */ topf = dd->perm[F->index]; topg = dd->perm[g->index]; if (topf <= topg) { fv = cuddT(F); fvn = cuddE(F); if (f != F) { fv = Cudd_Not(fv); fvn = Cudd_Not(fvn); } } else { fv = fvn = f; } if (topg <= topf) { gv = cuddT(g); gvn = cuddE(g); } else { gv = gvn = g; } /* Recursive calls. Since we want to maximize the probability of ** the special case f(1,...,1) > g(1,...,1), we consider the negative ** cofactors first. Indeed, the complementation parity of the positive ** cofactors is the same as the one of the parent functions. */ res = Cudd_bddLeq(dd,fvn,gvn) && Cudd_bddLeq(dd,fv,gv); /* Store result in cache and return. */ if (F->ref !=1 || g->ref != 1) cuddCacheInsert2(dd,(DD_CTFP)Cudd_bddLeq,f,g,(res ? one : zero)); return(res); } /* end of Cudd_bddLeq */ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /** @brief Implements the recursive step of Cudd_bddIte. @return a pointer to the resulting %BDD. NULL if the intermediate result blows up or if reordering occurs. @sideeffect None */ DdNode * cuddBddIteRecur( DdManager * dd, DdNode * f, DdNode * g, DdNode * h) { DdNode *one, *zero, *res; DdNode *r, *Fv, *Fnv, *Gv, *Gnv, *H, *Hv, *Hnv, *t, *e; int topf, topg, toph, v; unsigned int index; int comple; statLine(dd); /* Terminal cases. */ /* One variable cases. */ if (f == (one = DD_ONE(dd))) /* ITE(1,G,H) = G */ return(g); if (f == (zero = Cudd_Not(one))) /* ITE(0,G,H) = H */ return(h); /* From now on, f is known not to be a constant. */ if (g == one || f == g) { /* ITE(F,F,H) = ITE(F,1,H) = F + H */ if (h == zero) { /* ITE(F,1,0) = F */ return(f); } else { res = cuddBddAndRecur(dd,Cudd_Not(f),Cudd_Not(h)); return(Cudd_NotCond(res,res != NULL)); } } else if (g == zero || f == Cudd_Not(g)) { /* ITE(F,!F,H) = ITE(F,0,H) = !F * H */ if (h == one) { /* ITE(F,0,1) = !F */ return(Cudd_Not(f)); } else { res = cuddBddAndRecur(dd,Cudd_Not(f),h); return(res); } } if (h == zero || f == h) { /* ITE(F,G,F) = ITE(F,G,0) = F * G */ res = cuddBddAndRecur(dd,f,g); return(res); } else if (h == one || f == Cudd_Not(h)) { /* ITE(F,G,!F) = ITE(F,G,1) = !F + G */ res = cuddBddAndRecur(dd,f,Cudd_Not(g)); return(Cudd_NotCond(res,res != NULL)); } /* Check remaining one variable case. */ if (g == h) { /* ITE(F,G,G) = G */ return(g); } else if (g == Cudd_Not(h)) { /* ITE(F,G,!G) = F <-> G */ res = cuddBddXorRecur(dd,f,h); return(res); } /* From here, there are no constants. */ comple = bddVarToCanonicalSimple(dd, &f, &g, &h, &topf, &topg, &toph); /* f & g are now regular pointers */ v = ddMin(topg, toph); /* A shortcut: ITE(F,G,H) = (v,G,H) if F = (v,1,0), v < top(G,H). */ if (topf < v && cuddT(f) == one && cuddE(f) == zero) { r = cuddUniqueInter(dd, (int) f->index, g, h); return(Cudd_NotCond(r,comple && r != NULL)); } /* Check cache. */ r = cuddCacheLookup(dd, DD_BDD_ITE_TAG, f, g, h); if (r != NULL) { return(Cudd_NotCond(r,comple)); } checkWhetherToGiveUp(dd); /* Compute cofactors. */ index = f->index; if (topf <= v) { v = ddMin(topf, v); /* v = top_var(F,G,H) */ Fv = cuddT(f); Fnv = cuddE(f); } else { Fv = Fnv = f; } if (topg == v) { index = g->index; Gv = cuddT(g); Gnv = cuddE(g); } else { Gv = Gnv = g; } if (toph == v) { H = Cudd_Regular(h); index = H->index; Hv = cuddT(H); Hnv = cuddE(H); if (Cudd_IsComplement(h)) { Hv = Cudd_Not(Hv); Hnv = Cudd_Not(Hnv); } } else { Hv = Hnv = h; } /* Recursive step. */ t = cuddBddIteRecur(dd,Fv,Gv,Hv); if (t == NULL) return(NULL); cuddRef(t); e = cuddBddIteRecur(dd,Fnv,Gnv,Hnv); if (e == NULL) { Cudd_IterDerefBdd(dd,t); return(NULL); } cuddRef(e); r = (t == e) ? t : cuddUniqueInter(dd,index,t,e); if (r == NULL) { Cudd_IterDerefBdd(dd,t); Cudd_IterDerefBdd(dd,e); return(NULL); } cuddDeref(t); cuddDeref(e); cuddCacheInsert(dd, DD_BDD_ITE_TAG, f, g, h, r); return(Cudd_NotCond(r,comple)); } /* end of cuddBddIteRecur */ /** @brief Implements the recursive step of Cudd_bddIntersect. @sideeffect None @see Cudd_bddIntersect */ DdNode * cuddBddIntersectRecur( DdManager * dd, DdNode * f, DdNode * g) { DdNode *res; DdNode *F, *G, *t, *e; DdNode *fv, *fnv, *gv, *gnv; DdNode *one, *zero; unsigned int index; int topf, topg; statLine(dd); one = DD_ONE(dd); zero = Cudd_Not(one); /* Terminal cases. */ if (f == zero || g == zero || f == Cudd_Not(g)) return(zero); if (f == g || g == one) return(f); if (f == one) return(g); /* At this point f and g are not constant. */ if (f > g) { DdNode *tmp = f; f = g; g = tmp; } res = cuddCacheLookup2(dd,Cudd_bddIntersect,f,g); if (res != NULL) return(res); checkWhetherToGiveUp(dd); /* Find splitting variable. Here we can skip the use of cuddI, ** because the operands are known to be non-constant. */ F = Cudd_Regular(f); topf = dd->perm[F->index]; G = Cudd_Regular(g); topg = dd->perm[G->index]; /* Compute cofactors. */ if (topf <= topg) { index = F->index; fv = cuddT(F); fnv = cuddE(F); if (Cudd_IsComplement(f)) { fv = Cudd_Not(fv); fnv = Cudd_Not(fnv); } } else { index = G->index; fv = fnv = f; } if (topg <= topf) { gv = cuddT(G); gnv = cuddE(G); if (Cudd_IsComplement(g)) { gv = Cudd_Not(gv); gnv = Cudd_Not(gnv); } } else { gv = gnv = g; } /* Compute partial results. */ t = cuddBddIntersectRecur(dd,fv,gv); if (t == NULL) return(NULL); cuddRef(t); if (t != zero) { e = zero; } else { e = cuddBddIntersectRecur(dd,fnv,gnv); if (e == NULL) { Cudd_IterDerefBdd(dd, t); return(NULL); } } cuddRef(e); if (t == e) { /* both equal zero */ res = t; } else if (Cudd_IsComplement(t)) { res = cuddUniqueInter(dd,(int)index,Cudd_Not(t),Cudd_Not(e)); if (res == NULL) { Cudd_IterDerefBdd(dd, t); Cudd_IterDerefBdd(dd, e); return(NULL); } res = Cudd_Not(res); } else { res = cuddUniqueInter(dd,(int)index,t,e); if (res == NULL) { Cudd_IterDerefBdd(dd, t); Cudd_IterDerefBdd(dd, e); return(NULL); } } cuddDeref(e); cuddDeref(t); cuddCacheInsert2(dd,Cudd_bddIntersect,f,g,res); return(res); } /* end of cuddBddIntersectRecur */ /** @brief Implements the recursive step of Cudd_bddAnd. @details Takes the conjunction of two BDDs. @return a pointer to the result is successful; NULL otherwise. @sideeffect None @see Cudd_bddAnd */ DdNode * cuddBddAndRecur( DdManager * manager, DdNode * f, DdNode * g) { DdNode *F, *fv, *fnv, *G, *gv, *gnv; DdNode *one, *r, *t, *e; int topf, topg; unsigned int index; statLine(manager); one = DD_ONE(manager); /* Terminal cases. */ F = Cudd_Regular(f); G = Cudd_Regular(g); if (F == G) { if (f == g) return(f); else return(Cudd_Not(one)); } if (F == one) { if (f == one) return(g); else return(f); } if (G == one) { if (g == one) return(f); else return(g); } /* At this point f and g are not constant. */ if (f > g) { /* Try to increase cache efficiency. */ DdNode *tmp = f; f = g; g = tmp; F = Cudd_Regular(f); G = Cudd_Regular(g); } /* Check cache. */ if (F->ref != 1 || G->ref != 1) { r = cuddCacheLookup2(manager, Cudd_bddAnd, f, g); if (r != NULL) return(r); } checkWhetherToGiveUp(manager); /* Here we can skip the use of cuddI, because the operands are known ** to be non-constant. */ topf = manager->perm[F->index]; topg = manager->perm[G->index]; /* Compute cofactors. */ if (topf <= topg) { index = F->index; fv = cuddT(F); fnv = cuddE(F); if (Cudd_IsComplement(f)) { fv = Cudd_Not(fv); fnv = Cudd_Not(fnv); } } else { index = G->index; fv = fnv = f; } if (topg <= topf) { gv = cuddT(G); gnv = cuddE(G); if (Cudd_IsComplement(g)) { gv = Cudd_Not(gv); gnv = Cudd_Not(gnv); } } else { gv = gnv = g; } t = cuddBddAndRecur(manager, fv, gv); if (t == NULL) return(NULL); cuddRef(t); e = cuddBddAndRecur(manager, fnv, gnv); if (e == NULL) { Cudd_IterDerefBdd(manager, t); return(NULL); } cuddRef(e); if (t == e) { r = t; } else { if (Cudd_IsComplement(t)) { r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e)); if (r == NULL) { Cudd_IterDerefBdd(manager, t); Cudd_IterDerefBdd(manager, e); return(NULL); } r = Cudd_Not(r); } else { r = cuddUniqueInter(manager,(int)index,t,e); if (r == NULL) { Cudd_IterDerefBdd(manager, t); Cudd_IterDerefBdd(manager, e); return(NULL); } } } cuddDeref(e); cuddDeref(t); if (F->ref != 1 || G->ref != 1) cuddCacheInsert2(manager, Cudd_bddAnd, f, g, r); return(r); } /* end of cuddBddAndRecur */ /** @brief Implements the recursive step of Cudd_bddXor. @details Takes the exclusive OR of two BDDs. @return a pointer to the result is successful; NULL otherwise. @sideeffect None @see Cudd_bddXor */ DdNode * cuddBddXorRecur( DdManager * manager, DdNode * f, DdNode * g) { DdNode *fv, *fnv, *G, *gv, *gnv; DdNode *one, *zero, *r, *t, *e; int topf, topg; unsigned int index; statLine(manager); one = DD_ONE(manager); zero = Cudd_Not(one); /* Terminal cases. */ if (f == g) return(zero); if (f == Cudd_Not(g)) return(one); if (f > g) { /* Try to increase cache efficiency and simplify tests. */ DdNode *tmp = f; f = g; g = tmp; } if (g == zero) return(f); if (g == one) return(Cudd_Not(f)); if (Cudd_IsComplement(f)) { f = Cudd_Not(f); g = Cudd_Not(g); } /* Now the first argument is regular. */ if (f == one) return(Cudd_Not(g)); /* At this point f and g are not constant. */ /* Check cache. */ r = cuddCacheLookup2(manager, Cudd_bddXor, f, g); if (r != NULL) return(r); checkWhetherToGiveUp(manager); /* Here we can skip the use of cuddI, because the operands are known ** to be non-constant. */ topf = manager->perm[f->index]; G = Cudd_Regular(g); topg = manager->perm[G->index]; /* Compute cofactors. */ if (topf <= topg) { index = f->index; fv = cuddT(f); fnv = cuddE(f); } else { index = G->index; fv = fnv = f; } if (topg <= topf) { gv = cuddT(G); gnv = cuddE(G); if (Cudd_IsComplement(g)) { gv = Cudd_Not(gv); gnv = Cudd_Not(gnv); } } else { gv = gnv = g; } t = cuddBddXorRecur(manager, fv, gv); if (t == NULL) return(NULL); cuddRef(t); e = cuddBddXorRecur(manager, fnv, gnv); if (e == NULL) { Cudd_IterDerefBdd(manager, t); return(NULL); } cuddRef(e); if (t == e) { r = t; } else { if (Cudd_IsComplement(t)) { r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e)); if (r == NULL) { Cudd_IterDerefBdd(manager, t); Cudd_IterDerefBdd(manager, e); return(NULL); } r = Cudd_Not(r); } else { r = cuddUniqueInter(manager,(int)index,t,e); if (r == NULL) { Cudd_IterDerefBdd(manager, t); Cudd_IterDerefBdd(manager, e); return(NULL); } } } cuddDeref(e); cuddDeref(t); cuddCacheInsert2(manager, Cudd_bddXor, f, g, r); return(r); } /* end of cuddBddXorRecur */ /*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/ /** @brief Replaces variables with constants if possible. @details This function performs part of the transformation to standard form by replacing variables with constants if possible. @sideeffect None @see bddVarToCanonical bddVarToCanonicalSimple */ static void bddVarToConst( DdNode * f, DdNode ** gp, DdNode ** hp, DdNode * one) { DdNode *g = *gp; DdNode *h = *hp; if (f == g) { /* ITE(F,F,H) = ITE(F,1,H) = F + H */ *gp = one; } else if (f == Cudd_Not(g)) { /* ITE(F,!F,H) = ITE(F,0,H) = !F * H */ *gp = Cudd_Not(one); } if (f == h) { /* ITE(F,G,F) = ITE(F,G,0) = F * G */ *hp = Cudd_Not(one); } else if (f == Cudd_Not(h)) { /* ITE(F,G,!F) = ITE(F,G,1) = !F + G */ *hp = one; } } /* end of bddVarToConst */ /** @brief Picks unique member from equiv expressions. @details Reduces 2 variable expressions to canonical form. @sideeffect None @see bddVarToConst bddVarToCanonicalSimple */ static int bddVarToCanonical( DdManager * dd, DdNode ** fp, DdNode ** gp, DdNode ** hp, int * topfp, int * topgp, int * tophp) { DdNode *F, *G, *H, *r, *f, *g, *h; DdNode *one = dd->one; int topf, topg, toph; int comple, change; f = *fp; g = *gp; h = *hp; F = Cudd_Regular(f); G = Cudd_Regular(g); H = Cudd_Regular(h); topf = cuddI(dd,F->index); topg = cuddI(dd,G->index); toph = cuddI(dd,H->index); change = 0; if (G == one) { /* ITE(F,c,H) */ if ((topf > toph) || (topf == toph && f > h)) { r = h; h = f; f = r; /* ITE(F,1,H) = ITE(H,1,F) */ if (g != one) { /* g == zero */ f = Cudd_Not(f); /* ITE(F,0,H) = ITE(!H,0,!F) */ h = Cudd_Not(h); } change = 1; } } else if (H == one) { /* ITE(F,G,c) */ if ((topf > topg) || (topf == topg && f > g)) { r = g; g = f; f = r; /* ITE(F,G,0) = ITE(G,F,0) */ if (h == one) { f = Cudd_Not(f); /* ITE(F,G,1) = ITE(!G,!F,1) */ g = Cudd_Not(g); } change = 1; } } else if (g == Cudd_Not(h)) { /* ITE(F,G,!G) = ITE(G,F,!F) */ if ((topf > topg) || (topf == topg && f > g)) { r = f; f = g; g = r; h = Cudd_Not(r); change = 1; } } /* adjust pointers so that the first 2 arguments to ITE are regular */ if (Cudd_IsComplement(f) != 0) { /* ITE(!F,G,H) = ITE(F,H,G) */ f = Cudd_Not(f); r = g; g = h; h = r; change = 1; } comple = 0; if (Cudd_IsComplement(g) != 0) { /* ITE(F,!G,H) = !ITE(F,G,!H) */ g = Cudd_Not(g); h = Cudd_Not(h); change = 1; comple = 1; } if (change != 0) { *fp = f; *gp = g; *hp = h; } *topfp = cuddI(dd,f->index); *topgp = cuddI(dd,g->index); *tophp = cuddI(dd,Cudd_Regular(h)->index); return(comple); } /* end of bddVarToCanonical */ /** @brief Picks unique member from equiv expressions. @details Makes sure the first two pointers are regular. This mat require the complementation of the result, which is signaled by returning 1 instead of 0. This function is simpler than the general case because it assumes that no two arguments are the same or complementary, and no argument is constant. @sideeffect None @see bddVarToConst bddVarToCanonical */ static int bddVarToCanonicalSimple( DdManager * dd, DdNode ** fp, DdNode ** gp, DdNode ** hp, int * topfp, int * topgp, int * tophp) { DdNode *r, *f, *g, *h; int comple, change; f = *fp; g = *gp; h = *hp; change = 0; /* adjust pointers so that the first 2 arguments to ITE are regular */ if (Cudd_IsComplement(f)) { /* ITE(!F,G,H) = ITE(F,H,G) */ f = Cudd_Not(f); r = g; g = h; h = r; change = 1; } comple = 0; if (Cudd_IsComplement(g)) { /* ITE(F,!G,H) = !ITE(F,G,!H) */ g = Cudd_Not(g); h = Cudd_Not(h); change = 1; comple = 1; } if (change) { *fp = f; *gp = g; *hp = h; } /* Here we can skip the use of cuddI, because the operands are known ** to be non-constant. */ *topfp = dd->perm[f->index]; *topgp = dd->perm[g->index]; *tophp = dd->perm[Cudd_Regular(h)->index]; return(comple); } /* end of bddVarToCanonicalSimple */